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Equivariant IMU Preintegration with Biases:
a Galilean Group Approach

Giulio Delama1∗, Alessandro Fornasier1∗, Robert Mahony2 and Stephan Weiss1

Abstract—This letter proposes a new approach for Inertial
Measurement Unit (IMU) preintegration, a fundamental building
block that can be leveraged in different optimization-based
Inertial Navigation System (INS) localization solutions. Inspired
by recent advances in equivariant theory applied to biased INSs,
we derive a discrete-time formulation of the IMU preintegration
on Gal(3) ⋉ gal(3), the left-trivialization of the tangent group
of the Galilean group Gal(3). We define a novel preintegration
error that geometrically couples the navigation states and the
bias leading to lower linearization error. Our method improves
in consistency compared to existing preintegration approaches
which treat IMU biases as a separate state-space. Extensive
validation against state-of-the-art methods, both in simulation
and with real-world IMU data, implementation in the Lie++
library, and open-source code are provided.

Index Terms—Localization, Sensor Fusion, SLAM

I. INTRODUCTION AND RELATED WORK

INERTIAL Navigation Systems stand out as localization
methods for their ability to utilize data from IMUs and

fuse it with other sensors to determine the position and
orientation of a mobile robot. However, classical INS algo-
rithms encounter challenges dealing with biases in the IMU
measurements, yielding decreased performances in real-world
applications. The recent introduction of the equivariant filter
(EqF) [1]–[3], which is a novel and general filter design
method for systems evolving on homogeneous spaces, has
shown significant improvement in state estimation for bi-
ased INSs [3], [4]. Researchers have successfully improved
consistency, robustness, and accuracy by leveraging bias-
inclusive symmetries and developing EqFs [3]–[10] that out-
perform state-of-the-art methods based on the classical Ex-
tended Kalman Filter (EKF) and Invariant Extended Kalman
Filter (IEKF) [11]. Furthermore, the authors in [12] present an
EqF design method for discrete-time systems on homogeneous
spaces, demonstrating improved convergence and asymptotic
performance in simulation with a second-order kinematics
system with range and bearing measurements. Despite ad-
vances in the EqF domain, a crucial gap persists in apply-
ing this novel and promising theory to optimization-based
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estimation techniques, whose increasing traction is driven by
the growing affordability of powerful and compact computing
boards. In [13], [14] the authors propose a nonlinear smoothing
algorithm for group-affine observation systems, and in the
subsequent work [15] they show that utilizing the Two Frames
Group (TFG) to better account for IMU biases leads to better
performance compared to state-of-the-art methods. However,
research has not yet exploited the potential of equivariant the-
ory and bias-inclusive symmetries [4] applied to optimization-
based methods for biased INS, thus presenting an open field
for further exploration in robotics.

In the attempt to take a first step in that direction, this
work focuses on the IMU preintegration problem. Introduced
in [16], [17], IMU preintegration has become an essential
component of optimization-based localization methods for
INSs as it enables the formulation of a factor between two
non-consecutive IMU poses by using inertial measurements
only. Within this context, [18] marked a significant advance,
presenting a novel approach to address the computational
complexity of visual-inertial odometry (VIO) by integrating
inertial measurements between keyframes into single relative
motion constraints. This fundamental work presents a com-
prehensive preintegration theory that properly accounts for
the rotation group’s manifold structure SO(3) ×R3 ×R3 and
enables efficient computation of Jacobians for optimization.
Later works [19]–[21] propose novel IMU preintegration mod-
els based on the same underlying manifold.

In a recent work [22], it was demonstrated that utilizing the
SE2(3) Lie group to encode extended poses and using the
left-invariant (LI) error definition resulted in significantly im-
proved consistency and accuracy for IMU preintegration with
respect to previous methodologies that exclusively utilized
the SO(3) Lie group to represent rotations. This approach
represents a substantial advance in IMU preintegration theory
as it effectively characterizes uncertainty propagation within
extended poses, enabling a deeper theoretical description of the
problem and ensuring consistency over extended durations.

In another recent study [23], the authors introduce a novel
right-invariant (RI) IMU preintegration on SE2(3). The use
of a RI parametrization of the error improves the consistency
and accuracy of the resulting visual-inertial navigation system
(VINS) compared to previous methodologies [18]–[20] and
shows competitiveness against state-of-the-art [22].

A very recent paper [24] introduces an enhanced discrete-
time IMU preintegration formulation where the mean propaga-
tion is based on the exponential function of an automorphism
of SE2(3) [25], which leads to improved tracking perfor-
mance, particularly in scenarios with rapid rotational motion.
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In [26], the authors recognize the Galilean structure [27],
[28] of the preintegration problem and define a novel Lie group
called the IMU deltas matrix Lie group. Although they provide
a novel recursive calculation for IMU deltas, no coupling with
the IMU biases is considered. In this letter, we generalize
these findings and formalize the Galilean group Gal(3),
providing closed-form solutions for all its components. Similar
derivations can be found in the latest report [29], where
Gal(3) is referred to as the Special Galilean Group SGal(3).

To the best of the authors’ knowledge, previous research
on IMU preintegration has not exploited the symmetry of
the system to formulate an error that geometrically couples
the navigation and the bias states instead of treating them
separately. Encouraged by recent results in EqFs [3], [4], [8]–
[10], this letter presents a novel equivariant approach to the
IMU preintegration problem. We introduce a novel symmetry
based on the left-trivialized tangent group Gal(3) ⋉ gal(3)
and we define a linearized error dynamics based on the
equivariant error, which effectively establishes a geometric
coupling between the navigation states and the bias states, thus
resulting in better linearization for the navigation states’ error.
The advantage of our approach ultimately lies in shifting the
linearization error into the bias states, as opposed to retaining
it in the more dynamic navigation states [4].

We extensively tested our novel equivariant IMU prein-
tegration both in simulation and with real-world data: our
method exhibited superior performance in terms of consistency
compared to state-of-the-art preintegration methods [18], [22]–
[24]. In particular, we performed significantly better in all the
sequences of the well-known EuRoC MAV dataset [30].

The key contributions of this letter are summarized:
● Derivation of a novel discrete-time equivariant formu-

lation for the IMU preintegration on the left-trivialized
tangent group Gal(3) ⋉ gal(3) that includes IMU biases
into the symmetry of the system (summarized in Alg. 1).

● Validation of the proposed approach through an extensive
comparison against state-of-the-art IMU preintegration
methods in simulation and with real-world data.

● Implementation of Gal(3) and Gal(3) ⋉ gal(3) in the
publicly available Lie++ library1 and open-sourcing the
code, including fast Monte-Carlo batch simulation and
real-world IMU datasets evaluation.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

This letter utilizes bold lowercase letters to represent vector
quantities, bold capital letters to denote matrices, and regular
letters to indicate elements within a symmetry group. The
n-dimensional identity matrix is denoted In ∈ Rn×n and the
n ×m zero matrix is denoted 0n×m ∈ Rn×m.

A. Lie theory and matrix Lie groups

A Lie group G is a smooth manifold with a smooth group
structure. For any X,Y ∈ G, the group multiplication is
denoted by XY , while X−1 denotes the group inverse and I
is the identity element. The Lie algebra g can be modeled as
a vector space equivalent to the tangent space at the identity

1https://github.com/aau-cns/Lie-plusplus

of the group, combined with a bilinear non-associative map[ ⋅ , ⋅ ] ∶ g × g → g called Lie bracket. It is isomorphic to a
vector space Rn where n = dim(g). Choosing a basis for g
defines two linear mappings between g and Rn that are known
as the wedge map and its inverse, the vee map:

( ⋅ )∧ ∶ Rn → g, ( ⋅ )∨ ∶ g→ Rn.

The exponential map and its inverse, the logarithmic map,
maps elements between G and g in a neighbourhood of the
identity in G:

exp( ⋅ ) ∶ g→G, log( ⋅ ) ∶G→ g.

For any X,Y ∈G, the left and right translations by X are

LX( ⋅ ) ∶G→G, LX(Y ) =XY,
RX( ⋅ ) ∶G→G, RX(Y ) = Y X.

For any X ∈G and u∧ ∈ g, the Adjoint map for G is

AdX [ ⋅ ] ∶ g→ g, AdX [u∧] = dLX ○ dRX−1[u∧],
where dLX[ ⋅ ] and dRX[ ⋅ ] denote the differentials of the left
and right translations [3]. In addition, for any u∧, v∧ ∈ g, the
adjoint map for g is defined as the differential at the identity
of AdX [ ⋅ ], and it is equivalent to the Lie bracket:

adu∧ [ ⋅ ] ∶ g→ g, adu∧ [v∧] = [u∧, v∧] .
Considering a Lie group G, the G-Torsor is denoted by G and
it represents the set of elements from the Lie group but without
the explicit group structure, i.e., the intrinsic manifold.

This study employs matrix Lie groups, a subset of Lie
groups characterized by elements that can be represented as
invertible square matrices, and where the group operation is
the matrix multiplication. Within this context, the big ‘A’
Adjoint matrix, denoted Ad∨X ∈ Rn×n, is defined such that

Ad∨X ∶ Rn → Rn, Ad∨X u = (AdX [u∧])∨.
Similarly, the little ‘a’ adjoint matrix, denoted ad∨u ∈ Rn×n,
is defined such that

ad∨u ⋅ ∶ Rn → Rn, ad∨u v = [u∧, v∧]∨ .
Moreover, for a matrix Lie group G, the Adjoint map can be
expressed as AdX [u∧] = Xu∧X−1 and the Lie bracket is
equivalent to the matrix commutator, leading to

adu∧ [v∧] = [u∧, v∧] = u∧ v∧ − v∧ u∧,
where X ∈ G and u∧, v∧ ∈ g are represented as matrices. It
should be noted that the two expressions mentioned above do
not hold for products of matrix Lie groups. For a comprehen-
sive introduction to Lie theory applied to state estimation in
robotics, readers can refer to [31].

B. Semi-direct product and left-trivialized tangent group

Given a Lie group G, the tangent space at X ∈G is
associated with the set TXG = {dLX[u∧] =X u∧ ∣ u∧ ∈ g}
of left-translated Lie-algebra elements. The (left-trivialized)
correspondence (X, u∧) ↦ dLX[u∧] ∈ TXG is a G × g
parametrization of the tangent bundle. This set can be given
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a semi-direct product Lie-group structure [32] termed the left-
trivialized tangent group of G and denoted G⋉g ∶=G ⋉ g. Let
A,B ∈G and a, b ∈ g and define X = (A, a) and Y = (B, b)
as elements of the left-trivialized tangent group G ⋉ g. The
group operation is the semi-direct product

XY = (AB, a +AdA [b]) , (1)

the inverse element is

X−1 = (A−1, −AdA−1 [a]) , (2)

and the identity element is (I, 0).
The left-trivialized tangent group was first applied to design

equivariant filters and observers for INSs in [3], [4], [8]–[10],
[33] although the geometric structure was known since the
seventies [32]. For a comprehensive introduction to equivariant
theory and symmetries for INSs, readers can refer to [34].

C. Useful matrix Lie groups

The special orthogonal group SO(3), representing 3D
rotations in space, and its Lie algebra so(3) are defined as

SO(3) = {A ∈ R3×3 ∣AA⊺ = I3, det(A) = 1} ,
so(3) = {ω∧ ∈ R3×3 ∣ ω∧ = −ω∧⊺} .

The extended special Euclidean group SE2(3), representing
extended poses, and its Lie algebra se2(3) are defined as

SE2(3) = {[ A a b
02×3 I2

] ∈ R5×5 ∣A ∈ SO(3), a, b ∈ R3} ,
se2(3) = {[ ω∧ v r

02×3 02×2
] ∈ R5×5 ∣ ω∧ ∈ so(3), v , r ∈ R3} .

III. THE GALILEAN GROUP

This section presents the Galilean matrix Lie group Gal(3)
and derives closed-form expressions for its components.
Gal(3) is the group of 3D rotations, translations in space
and time, and transformations between frames of reference
that only differ in constant relative motion. This formalization
enables a concise and elegant description of the discrete-time
IMU preintegration, and it is fundamental for establishing the
bias-inclusive symmetry presented in Sec. IV-C, ultimately
improving consistency and minimizing linearization errors [4].
Furthermore, the analytical closed-form expressions allows
fast computation by eliminating the need for numerical or
approximated solutions in practical implementation.

Let X ∈ Gal(3) denote an element of the Galilean group,
represented in its matrix form as

X =
⎡⎢⎢⎢⎢⎢⎣

A a b
01×3 1 c
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5, (3)

with A ∈ SO(3), a, b ∈ R3 and c ∈ R.
Let x ∈ R10 so that x∧ ∈ gal(3) denote an element of the Lie
algebra of Gal(3), which is represented by the matrix form

x∧ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω
v
r
α

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∧

=
⎡⎢⎢⎢⎢⎢⎣
ω∧ v r
01×3 0 α
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5, (4)

with ω∧ ∈ SO(3), v , r ∈ R3 and α ∈ R.
The inverse element in matrix form is written

X−1 =
⎡⎢⎢⎢⎢⎢⎣
A⊺ −A⊺ a −A⊺(b − c a)
01×3 1 −c
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5. (5)

The adjoint matrices are defined as

Ad∨X ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

A 03×3 03×3 03×1

a∧A A 03×3 03×1(b − c a)∧A −cA A a
01×3 01×3 01×3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

ad∨x ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω∧ 03×3 03×3 03×1

v∧ ω∧ 03×3 03×1

r∧ −αI3 ω∧ v
01×3 01×3 01×3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Closed forms of the exponential and logarithmic maps are

exp(x∧)=
⎡⎢⎢⎢⎢⎢⎣
exp(ω∧) Γ1(ω)v Γ1(ω)r + αΓ2(ω)v
01×3 1 α
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
, (8)

log(X)=
⎡⎢⎢⎢⎢⎢⎣
log(A) Γ1(log(A)∨)−1a Γ1(log(A)∨)−1Ξ
01×3 0 c
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
, (9)

with Ξ = (b − cΓ2(log(A)∨)Γ1(log(A)∨)−1 a).
Γ1 and Γ2 denote respectively the SO(3) left Jacobian
and auxiliary function [35], both with known closed-
form expressions Γ1(ω) = I3 + κ1 ω∧ + κ2 ω∧ ω∧ and
Γ2(ω) = 1

2
I3 + κ2 ω∧ + κ3 ω∧ ω∧ with κ1 = 1−cos(∥ω∥)

∥ω∥2
,

κ2 = ∥ω∥−sin(∥ω∥)
∥ω∥3

, and κ3 = ∥ω∥2+2 cos(∥ω∥−2)2∥ω∥4
.

Finally, the closed-form of the Gal(3) left Jacobian JL is

JL(x) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γ1(ω) 03×3 03×3 03×1

Q1(ω , v) Γ1(ω) 03×3 03×1

Ω −αU1(ω) Γ1(ω) Γ2(ω) v
01×3 01×3 01×3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

with Ω =Q1(ω , r) − αQ2(ω , v) and

Q1(ω , z) = ∞∑
p=0

∞∑
k=0

1(p + k + 2)!(ω∧)k z∧(ω∧)p, (11)

Q2(ω , z) = ∞∑
p=0

∞∑
k=0

p + 1(p + k + 3)!(ω∧)k z∧(ω∧)p, (12)

U1(ω) = ∞∑
k=0

1(k + 2)!(ω∧)k. (13)

The expressions for Q1, Q2, and U1 are then derived in
closed-form. The detailed derivation and the final results are
provided in the arXiv version of this letter [36].

IV. EQUIVARIANT IMU PREINTEGRATION

The core contribution of this work is the derivation of a
novel discrete-time formulation for the equivariant IMU prein-
tegration on the left-trivialized tangent group of Gal(3), i.e.,
Gal(3) ⋉ gal(3). Specifically, we propose a novel symmetry
for the preintegration problem, which explicitly accounts for
the IMU biases, hence improving the propagation of uncer-
tainties and minimizing the linearization errors.
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A. Biased Inertial Navigation System (INS)

Consider a mobile robot equipped with an IMU that delivers
biased angular velocity and acceleration measurements. Under
non-rotating, flat earth assumption, the noise-free continuous-
time biased INS is characterized by the following equations:

Ṙ = R (ω − bω)∧ , (14a)
v̇ = R (a − ba) + g , (14b)
ṗ = v , (14c)

ḃω = τω, (14d)

ḃa = τ a, (14e)

where R ∈ SO(3) and v , p ∈ R3 denote the core states (or
navigation states), i.e., the rigid body orientation, velocity,
and position in the global reference frame. bω, ba ∈ R3 denote
the bias state, g ∈ R3 is the gravity vector, and ω , a ∈ R3

are the biased rigid body angular velocity and acceleration.
τω, τ a ∈ R3 are inputs used to model the evolution of the
bias terms, e.g., they are zero if the biases are modeled as
constant quantities. Similarly to [3], [4], by extending (14)
with additional virtual inputs and bias states, the noise-free
biased INS can be reformulated as follows.

Let ξ = (T, b) ∈ M ∶= SE2(3) ×R9 represent the state
of the augmented system, where the extended pose
T = (R, v , p) ∈ SE2(3) represents the core states and
b = (bω, ba, bν) ∈ R9 represents the bias states, including the
IMU biases and an additional virtual velocity bias bν ∈ R3,
which was initially introduced in [3]. Define the systems’ input
u = (w, τ ) ∈ L ⊆ R18, where w = (ω , a, ν) ∈ R9 includes
the inertial measurements and an additional virtual velocity
input ν = 03×1, and τ = (τω, τ a, τ ν) ∈ R9 denotes the bi-
ases input. By defining the matrices

G ∶= [03×3 g 03×1

02×3 02×1 02×1
] ∈ R5×5, N ∶=

⎡⎢⎢⎢⎢⎢⎣
03×4 03×1

01×4 1
01×4 0

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5,

we can represent the noise-free continuous-time biased INS in
compact form as ξ̇ = f(ξ, u), that is

⎧⎪⎪⎨⎪⎪⎩
Ṫ = (G −N)T + T(w∧ − b∧ +N)
ḃ = τ , (15)

where w∧, b∧ ∈ se2(3).
B. Discrete-time IMU preintegration

Under the assumption of a constant noise-free input ui be-
tween consecutive time steps ti and ti+1, the exact discretiza-
tion of (15) results in the following discrete-time formulation
of the noise-free biased INS:

{Ti+1 = exp((G −N)δt)Ti exp((w∧i − b∧i +N)δt)
bi+1 = bi + τ iδt

, (16)

where ξi = (Ti, bi) and ui = (wi, τ i) denote the state and
the input at the i-th time step, and δt = ti+1 − ti. Here, exp(⋅)
denotes the matrix exponential. Given two non-consecutive
time steps ti and tj , and defining the preintegration time
∆tij = tj − ti, the newest pose Tj is given by

Tj = Γij TiΥij , (17)

where Γij and Υij are exact integration terms defined as

Γij ∶= j−1∏
k=i

exp((G −N)δt) =∶
⎡⎢⎢⎢⎢⎢⎣
I3 g∆tij − 1

2
g∆t2ij

01×3 1 −∆tij
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
, (18)

Υij ∶= j−1∏
k=i

exp((w∧k−b∧k+N)δt) =∶
⎡⎢⎢⎢⎢⎢⎣
∆Rij ∆vij ∆pij

01×3 1 ∆tij
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
. (19)

Note that Γij is not to be confused with Γ1 and Γ2 of Sec. III.
By reorganizing (17) we obtain the following expression:

Υij = T−1i Γ−1ij Tj , (20)

with

Γ−1ij =
⎡⎢⎢⎢⎢⎢⎣
I3 − g∆tij − 1

2
g∆t2ij

01×3 1 ∆tij
01×3 0 1

⎤⎥⎥⎥⎥⎥⎦
.

We refer to Υij as the preintegration matrix, which stores all
the necessary information for relating Tj with Ti, as outlined
in (20). By reworking (19), the iterative computation of the
preintegration matrix, starting from j = i with Υii = I5, is

Υi(j+1) =Υij exp((w∧j − b∧j +N)δt). (21)

C. Symmetry of the preintegration problem

The previous equation defines the exact, discrete-time evolu-
tion of the preintegration matrix Υij as a function of the biased
inertial measurements, biases, and time step. Furthermore, (19)
reveals that the preintegration matrix can be represented as an
element of the Galilean group Gal(3), which has been formal-
ized in Sec. III. This allows us to reformulate the preintegration
problem under the lens of equivariance and hence to exploit
the structure given by the equivariant error [1], [2], [37] to
define a linearized error dynamics with reduced linearization
error, yielding improved consistency. From here onward, we
adopt a lean notation by defining Υk ∶=Υi(i+k) and bk ∶= bi+k,
with ξ0 = (Υ0, b0) = (I5, bi).

Let us define M ∶= G(3) ×R10 and let ξk = (Υk, bk) ∈ M
represent the state of our system. The preintegration ma-
trix Υk = (∆Rk, ∆vk, ∆pk, ∆tk) ∈ G(3) denotes the pre-
integrated navigation states and the preintegration time. The
bias states are denoted by bk = (bωk, bak, bνk, bρk) ∈ R10

and include the IMU biases as well as two additional virtual
biases: a velocity bias bνk ∈ R3 and a time bias bρk ∈ R.
Define the systems’ input uk = (wk, τ k) ∈ L ⊆ R20, where
wk = (ωk, ak, νk, ρk) ∈ R10 represents the IMU readings
and two additional virtual inputs: a velocity input νk = 03×1,
and a time input ρk = 1. The corresponding bias inputs are
τ k = (τωk, τ ak, τ νk, τρk) ∈ R10.
The resulting formulation of the noise-free IMU preintegration
on the manifold M is presented as follows:

{Υk+1 =Υk exp((w∧k − b∧k)δt)
bk+1 = bk + τ kδt

, (22)

where w∧k , b
∧

k ∈ gal(3) and exp(⋅) denotes the Gal(3) group
exponential (8). The system written in compact form is

ξk+1 = Fδt(ξk, uk), ξ0 = (I5, b0), (23)
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where Fδt ∶ M ×L→M and

Fδt(ξk, uk) = (Υk exp((w∧k − b∧k)δt), bk + τ kδt) .
Having successfully derived the system’s evolution on the
manifold, our next step is to establish the equivalent (lifted)
system that evolves within the symmetry group. This step is
crucial, as it enables us to define the equivariant error and to
subsequently linearize its dynamics, allowing the derivation
of the matrices used for the uncertainty propagation while
accounting for the input measurement noise.

For the remainder of the letter, we simplify the notation
by defining the symmetry group G for the IMU preintegra-
tion problem as G ∶=Gal(3) ⋉ gal(3), that is the semi-direct
product between Gal(3) and its Lie algebra (Sec. II-B). Let
Xk = (Ck, γk) ∈G be an element of the symmetry group.
Define the state action ϕ ∶G ×M→M as

ϕ(Xk, ξk) ∶= (ΥkCk, Ad∨C−1
k
(bk − γ∨k)) . (24)

Then, ϕ is a transitive and free right group action of G onM. Fix ξ̊ ∈ M, then since the action is free, the partial map
ϕξ̊ ∶ G → M is a diffeomorphism. The inverse state action
ϕ−1
ξ̊
∶ M →G is

ϕ−1
ξ̊
(ξk) = (Υ̊−1Υk, b̊

∧ − (Ad∨
Υ̊
−1

Υk
bk)∧) . (25)

Define the input action ψ ∶G ×L→ L as

ψ(Xk, uk) ∶= (Ad∨C−1
k
(wk − γ∨k), Ad∨C−1

k
τ k) . (26)

Then, ψ is a right group action of G on L. The system (23) is
equivariant under the actions ϕ,ψ of G. The proof is omitted
for space limitations but it follows from [3].

A discrete lift for the system is a map Λδt ∶ M ×L→G
with the lift condition ϕ (Λδt(ξk, uk), ξk) = Fδt(ξk, uk),∀ξk ∈ M and ∀uk ∈ L [12]. Define the discrete lift Λδt ∶M ×L→G as

Λδt(ξk, uk) ∶= (Λ1δt(ξk, uk), Λ2δt(ξk, uk)) , (27)
where

Λ1δt(ξk, uk) = exp ((w∧k − b∧k) δt) ,
Λ2δt(ξk, uk) = b∧k −AdΛ1δt

(ξk,uk)
[b∧k + τ∧kδt] .

Then, Λδt is an equivariant lift for the system in (23) with
respect to the symmetry group G. Finally, the lifted system
evolution on G is presented as follows:

Xk+1 =XkΛδt(ϕξ̊(Xk), uk) , X0 = ϕ−1ξ̊ (ξ0), (28)

where ξ̊ ∈ M is an arbitrarily chosen state origin and the
group product is defined in (1). Note that we can transfer
elements from the symmetry group G to the manifold M
with ξk = ϕξ̊(Xk), and vice versa with Xk = ϕ−1ξ̊ (ξk).
D. Linearization of the error dynamics

The symmetry introduced in the previous subsection allows
to exploit the geometric structure of the equivariant error [1],
[2], [37] and hence to define an error as a measure between
the homogeneous space and the symmetry group. Specifically,
the equivariant error is defined as follows:

ek ∶= ϕ(X̂−1k , ξk) = (ΥkĈ
−1
k , Ad∨

Ĉk
bk + γ̂∨k) , (29)

where X̂k = (Ĉk, γ̂k) ∈G denotes the current state estimate
on the symmetry group, and ξk = (Υk, bk) ∈ M denotes the
actual (true) state on the manifold. Given ek ∈ M, we must
define a local parametrization in the neighborhood of ξ̊. A
natural choice of parametrization is logarithmic or normal
coordinates. Let us choose normal coordinates and define a
local chart ϑ ∶ M → R20 as

ϑ(ek) ∶= logG(ϕ−1ξ̊ (ek)) , (30)

where logG( ⋅ ) ∶G→ R20 denotes the logarithm of the tan-
gent group Gal(3) ⋉ gal(3), which is defined as follows:

logG(Xk) = (log(Ck)∨, JL(log(Ck)∨)−1γ∨k ) , (31)

with log(⋅) and JL(⋅) respectively denoting the Gal(3) loga-
rithmic map (9) and the Gal(3) left jacobian matrix (10).
The error (29) expressed in local coordinates (30) is written

εk = ϑ(ek) = logG(ϕ−1ξ̊ (ϕ(X̂−1k , ξk))) . (32)

By fixing ξ̊ = (Υ̊, b̊) = (I5, 010×1) and considering that

ξ̂k = ϕξ̊(X̂k) = (Υ̊Ĉk, Ad∨
Ĉ−1

k

(b̊ − γ̂∨k)) = (Υ̂k, b̂k), (33)

we can expand (32) and express it as

εk =(log(ΥkΥ̂
−1
k )∨, −JL(log(ΥkΥ̂

−1
k )∨)−1Ad∨Υk

(bk− b̂k)). (34)

Let us consider a noisy input ũk = (w̃k, τ̃ k). w̃k = wk + ηwk

includes the noisy and biased IMU measurements ω̃k and
ãk as well as the two virtual inputs νk and ρk introduced
in Sec. IV-C. τ̃ k = τ k + ητk denotes the noisy bias input. The
linearized error dynamics about εk = 0 ∈ R20 is then derived
as follows:

εk+1 ≈ Âk+1 εk + B̂k+1 ηk (35)

with ηk = (ηwk, ητk) ∈ R20,

Âk+1 = [ I10 JL(ẘkδt)δt
010×10 Ad∨exp(ẘ∧

k
δt)
] , (36)

B̂k+1 = [Ad∨
Υ̂k

JL((w̃k − b̂k)δt)δt 010×10

010×10 −Ad∨
Υ̂k+1

δt
] , (37)

and ůk ∶= ψ(X̂−1k , ũk) = (ẘk, τ̊ k) ⇒ ẘk =Ad∨
Υ̂k
(w̃k − b̂k).

E. Bias update and practical implementation

From (22) we note that the preintegration matrix Υ̂k+1 is
recursively calculated using the current bias estimate during
the mean propagation. Since it would be very time-consuming
to repeat the whole computation every time the estimated bias
gets updated during the optimization process, we perform the
bias update using first-order approximation similarly to [23].
The Jacobian matrix of ξk+1 with respect to b̂k is propagated
iteratively as Jξk+1 =Φbk+1Jξk starting from Jξ0 = I20, with

Φbk+1 = [ I10 −Ad∨
Υ̂k

JL((w̃k − b̂k)δt)δt
010×10 I10

] . (38)

Then, given a new bias estimate b̂+0 ← b̂0 +∆b̂, the bias
update on the preintegration matrix is performed as

Υ̂+k+1 ≈ exp((JΥk+1∆b̂)∧)Υ̂k+1, (39)
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Algorithm 1 IMU Preintegration on Gal(3) ⋉ gal(3)
Define: ξ̊ = (I5, 010×1), X̂0 = (I5, − b∧0), Jξ0 = I20, Σ0,

Qd = diag(σd
2
ω, σd

2
a, 04×1, σd

2
τω , σd

2
τa , 04×1).

Input: w̃k = (ω̃k, ãk, 03×1, 1), τ k = 010×1,
δt = tk+1 − tk.

Output: X̂k+1⇔ ξ̂k+1, Σk+1, Jξk+1.

Require: IMU measurements (ω̃k, ãk) from k = 0 to N
for k ← 0 to N do

ũk ← (w̃k, τ̃ k)
X̂k+1 ← X̂kΛδt(ϕξ̊(X̂k), ũk) (28)
ξ̂k+1 ← ϕξ̊(X̂k+1) (33)
Σk+1 ← Âk+1ΣkÂ

⊺

k+1 + B̂k+1QdB̂
⊺

k+1 (35)
Jξk+1 ←Φbk+1Jξk (38)

end for

where JΥk+1 ∈ R10×10 is the upper right 10 × 10 corner of
Jξk+1, and exp(⋅) is the Gal(3) exponential map (8).

We finally derived all the necessary components for our
novel equivariant IMU preintegration, summarized in Alg. 1,
which iteratively propagates both mean X̂k and covariance Σk

of the equivariant error, together with the Jacobian Jξk for the
bias update. To streamline C++ development, we added both
Gal(3) and its left-trivialized tangent group Gal(3) ⋉ gal(3)
to the header-only open-source library Lie++2.

V. EXPERIMENTS AND RESULTS

The approach described in the previous section is validated
with simulated and real-world data. A thorough comparison
with existing IMU preintegration methodologies is presented.

A. Simulation

In simulation, we generated different analytic trajectories
consisting of a circular motion on the xy-plane and a cosine
wave on the z-axis [23]. Synthetic IMU measurements were
also generated at a rate of 200 Hz. To validate the proposed
approach, we performed several Monte Carlo (MC) simula-
tions varying the trajectory parameters and sampling M = 103
unique realizations of the noise parameters at each time stamp.

We compared the consistency of our method to state-
of-the-art IMU preintegration methods [18], [22]–[24] by
computing the Average Normalized Estimation Error Squared
(ANEES) [38] as follows:

ANEES ∶= 1

Mn

M∑
i=1

ε⊺iΣ
−1
i εi, (40)

where M is the number of MC samples, n = dim(ε) is the
dimension of the error, εi and Σi are respectively the error
and its covariance for the i-th MC realization. To ensure a rig-
orous comparison for the consistency analysis, we uniformly
applied (17) for the mean propagation across all methods
and we set the error (and covariance) dimension to n = 15
encompassing the navigation states and the IMU biases.

We found that the specific ANEES plot for each MC simu-
lation is influenced by various factors, including the signal-to-
noise ratio (SNR), quantization error, and the intensity of the

2https://github.com/aau-cns/Lie-plusplus

1

2 λ = 0.1

SO(3) ×R6 ×R6[18] LI-SE2(3) ×R6[22] RI-SE2(3) ×R6[23] MAVIS[24] Our

1

2

A
N

E
E

S

λ = 1

0 5 10 15 20 25 30

∆tij (s)
1

2 λ = 10

Figure 1. Average NEES for a simulated trajectory with an average speed of
0.9 m/s with low noise (top), medium noise (middle), and high noise (bot-
tom). The discrete noise parameters (σd = σc/

√

∆t) are σdω = 7e-2 rad/s,
σda = 1.9e-1 m/s2, σdτω = 1.5e-4 rad/s2, σdτa = 1.2e-2 m/s3, and λ is
the noise multiplier.
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Figure 2. Average linearization error of ε∆Tk
for a simulated tra-

jectory with an average speed of 0.9 m/s with low noise (top),
medium noise (middle), and high noise (bottom). The discrete noise
parameters (σd = σc/

√

∆t) are σdω = 7e-2 rad/s, σda = 1.9e-1 m/s2,
σdτω = 1.5e-4 rad/s2, σdτa = 1.2e-2 m/s3, and λ is the noise multiplier.

IMU excitation. Nevertheless, the fundamental pattern remains
consistent across the different MC simulations. Figure 1 shows
the ANEES for such simulations with varying noise levels.
A parameter λ acts as a multiplier for all the discrete noise
parameters. The proposed equivariant IMU preintegration on
Gal(3)⋉gal(3) exhibits better consistency over long preinte-
gration times compared to state-of-the-art methods, which do
not include the IMU biases into the geometry of the system.

In [4], the authors demonstrated that exploiting the tan-
gent group of SE2(3) to design an equivariant filter for
continuous time biased INSs yields the exact linearization of
the navigation error dynamics. This motivated us to evaluate
the linearization error of the preintegration problem and to
compare our approach against the RI-SE2(3) ×R6 [23]. This
choice was made due to the common error definition for the
preintegrated navigation states ∆R, ∆v , and ∆p between
the two methods while at the same time RI-SE2(3) ×R6

shows best consistency among the tested state-of-the-art ap-
proaches. In fact, the core states’ error definition for the
RI-SE2(3) ×R6 is ε∆Tk

= log(∆Tk∆T̂−1k )∨ ∈ R9 [23, (13a)]
where ∆Tk = (∆Rk, ∆vk, ∆pk) ∈ SE2(3), and log(⋅) is
the logarithmic map of SE2(3).
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Table I
IMU PREINTEGRATION COMPARISON: NEES MEDIAN FOR DIFFERENT PREINTEGRATION TIMES ∆tij ON THE EUROC MAV DATASET [30].

Method SO(3) ×R6
×R6 [18] LI-SE2(3) ×R6 [22] RI-SE2(3) ×R6 [23] MAVIS [24] Gal(3) ⋉ gal(3)

∆tij 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s 0.2s 0.5s 1.0s

MH_01 1.374 2.547 4.070 1.374 2.545 4.070 1.373 2.545 4.071 1.371 2.549 4.030 1.186 1.866 2.347
MH_02 1.113 2.077 2.871 1.113 2.077 2.871 1.114 2.078 2.870 1.096 2.071 2.867 0.946 1.526 1.755
MH_03 1.210 2.667 4.545 1.208 2.663 4.545 1.215 2.660 4.547 1.219 2.660 4.537 1.207 2.269 3.221
MH_04 1.222 2.638 4.506 1.216 2.641 4.534 1.220 2.635 4.531 1.220 2.636 4.524 1.204 2.469 2.757
MH_05 1.383 3.404 4.516 1.383 3.405 4.502 1.383 3.405 4.515 1.382 3.378 4.512 1.377 2.645 2.668

V1_01 1.741 5.139 10.141 1.741 5.145 10.133 1.744 5.147 10.149 1.741 5.151 10.130 1.716 4.837 8.302
V1_02 1.363 2.456 3.844 1.370 2.466 3.834 1.371 2.463 3.837 1.382 2.467 3.841 1.339 2.330 2.458
V1_03 1.828 3.783 5.891 1.793 3.816 5.856 1.789 3.824 5.800 1.830 3.801 6.007 1.734 3.331 3.457
V2_01 2.024 5.644 8.406 2.023 5.643 8.411 2.022 5.649 8.413 2.024 5.644 8.402 2.006 5.350 7.342
V2_02 2.579 6.627 9.788 2.574 6.620 9.573 2.579 6.627 9.761 2.576 6.634 9.732 2.573 6.430 8.422
V2_03 3.047 8.290 13.549 3.047 8.216 13.573 3.047 8.213 13.546 3.047 8.254 13.623 3.025 7.935 11.145

The best results are in bold and the second-best results are underlined.

For the proposed equivariant preintegration, the core states’
error is defined according to (34) as εΥk

= log(ΥkΥ̂
−1
k )∨ ∈ R10,

where Υk = (∆Rk, ∆vk, ∆pk, ∆tk) ∈ G(3) and log(⋅) is
the logarithmic map of Gal(3) (9). By assuming ∆̂tk
to be exact, i.e., ∆̂tk =∆tk, it can be easily proven that
εΥk
= (ε∆Tk

, 0). This equivalence allows for a direct com-
parison of the linearization error of ε∆Tk

. We define the
Average Linearization Error (ALE) for ∆Tk as follows:

ALE ∶= 1

M

M∑
i=1

∥ε∆Tk,i − ε̂∆Tk,i∥, (41)

where ε∆Tk
denotes the true error, and ε̂∆Tk

denotes the
estimated error. For the two methods, ε̂∆Tk

is computed via
first order propagation from the previous true error and true
noise as ε̂k = Âk+1 εk−1 + B̂k+1 ηk, using [23, (6a)] and (35)
respectively. The first 9 elements of ε̂k represent ε̂∆Tk

.
Figure 2 shows that the equivariant error formulation on

Gal(3) ⋉ gal(3) leads to a significantly lower linearization
error compared to the RI-SE2(3) ×R6 method of [23]. The
improved linearization error of the proposed methodology can
be understood by comparing the structure of the propagation
matrix Âk+1 in (36) with the one in [23, (6b)]. Specifically,
the results presented in this work generalize those of [4] to
discrete-time inertial navigation systems. In particular, it can
be observed that the Âk+1 matrix (36) relates to the matrix
exponential of the continuous-time A matrix in [4, (A.18)].
Therefore, our approach shifts the linearization error from
the core navigation states to the bias states yielding a lower
linearization error overall.

B. Real-world IMU data

The simulation results demonstrate noteworthy improve-
ments in both consistency, compared to [18], [22]–[24], and
linearization error, outperforming [23]. Nonetheless, further
validation using real-world IMU data becomes imperative
due to unmodeled, non-ideal effects, such as non-Gaussian
noise distributions, vibration, and aliasing effects, as illustrated
in [39, Fig. 15]. To assess the real-world performance of our
novel equivariant IMU preintegration on Gal(3) ⋉ gal(3), we
selected the well-known and widely recognized EuRoC MAV
dataset [30], which provides ground-truth poses, velocities
and IMU biases, as well as IMU measurements and noise
parameters. We partitioned each dataset sequence into sub-
trajectories with a duration corresponding to a preintegration
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Figure 3. Consistency comparison on the EuRoC MAV dataset [30]: NEES
box-plot for different preintegration times ∆tij = [0.2s, 0.5s, 1.0s] on the
V1_03 and MH_01 sequences. Orange lines indicate the medians while green
triangles denote the means. Longer preintegration times clearly show the
benefit of our approach.

time ∆tij . We then performed the IMU preintegration for
each sub-sequence with different methods, starting from the
ground-truth values and with the same initial covariance, and
we computed the NEES at the end of ∆tij . This process was
iterated across various preintegration times, and we analyzed
the NEES distribution over all sub-sequences to derive sta-
tistical information for each method. The proposed approach
outperforms state-of-the-art methods [18], [22]–[24] in terms
of consistency across all sequences in the dataset, as reported
in Tab. I. Figure 3 shows the specific NEES statistics for the
V1_03 and the MH_01 sequences.

VI. CONCLUSION

This letter introduces a theoretical framework for IMU
preintegration on Gal(3) ⋉ gal(3), i.e., the left-trivialized
tangent group of the Galilean group Gal(3), and successfully
demonstrates its performance when compared with state-of-
the-art methodologies. Specifically, we leverage an equivariant
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symmetry to define a novel preintegration error that geo-
metrically couples the navigation states and the bias states,
ultimately improving the covariance propagation, and hence
the consistency, for the preintegrated IMU measurements.
An extensive validation against existing IMU preintegration
methods is carried out, both in simulation and with real-world
datasets. Results show that the proposed approach not only
achieves lower linearization error than state-of-the-art but it
also achieves the best NEES in every sequence of the EuRoC
MAV dataset and for every preintegration time. To facilitate
integration, reproducibility, and further comparison we open-
source our code, including a practical implementation of the
symmetry groups into the Lie++ library.

REFERENCES

[1] P. Van Goor, T. Hamel, and R. Mahony, “Equivariant Filter (EqF): A
General Filter Design for Systems on Homogeneous Spaces,” Proceed-
ings of the IEEE Conference on Decision and Control, vol. 2020-Decem,
no. Cdc, pp. 5401–5408, 2020.

[2] P. van Goor, T. Hamel, and R. Mahony, “Equivariant Filter (EqF),” IEEE
Transactions on Automatic Control, vol. 68, no. 6, pp. 3501 – 3512, 6
2022.

[3] A. Fornasier, Y. Ng, R. Mahony, and S. Weiss, “Equivariant Filter
Design for Inertial Navigation Systems with Input Measurement Biases,”
2022 International Conference on Robotics and Automation (ICRA), pp.
4333–4339, 5 2022.

[4] A. Fornasier, Y. Ge, P. van Goor, R. Mahony, and S. Weiss, “Equiv-
ariant Symmetries for Inertial Navigation Systems,” arXiv preprint
arXiv:2309.03765, 9 2023.

[5] P. van Goor and R. Mahony, “An Equivariant Filter for Visual Inertial
Odometry,” Proceedings - IEEE International Conference on Robotics
and Automation, vol. 2021-May, pp. 1875–1881, 2021.

[6] P. Van Goor and R. Mahony, “EqVIO: An Equivariant Filter for Visual-
Inertial Odometry,” IEEE Transactions on Robotics, vol. 39, no. 5, pp.
3567–3585, 10 2023.

[7] T. Bouazza, K. Ashton, P. Van Goor, R. Mahony, and T. Hamel, “Equiv-
ariant Filter for Feature-Based Homography Estimation for General
Camera Motion,” Proceedings of the IEEE Conference on Decision and
Control, pp. 8463–8470, 2023.

[8] A. Fornasier, Y. Ng, C. Brommer, C. Bohm, R. Mahony, and S. Weiss,
“Overcoming Bias: Equivariant Filter Design for Biased Attitude Es-
timation With Online Calibration,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 12 118–12 125, 10 2022.

[9] M. Scheiber, A. Fornasier, C. Brommer, and S. Weiss, “Revisiting Multi-
GNSS Navigation for UAVs – An Equivariant Filtering Approach,”
in 2023 21st International Conference on Advanced Robotics (ICAR).
IEEE, 12 2023, pp. 134–141.

[10] A. Fornasier, P. v. Goor, E. Allak, R. Mahony, and S. Weiss, “MSCEqF:
A Multi State Constraint Equivariant Filter for Vision-aided Inertial
Navigation,” IEEE Robotics and Automation Letters, 1 2023.

[11] A. Barrau and S. Bonnabel, “The Invariant Extended Kalman Filter as
a Stable Observer,” IEEE Transactions on Automatic Control, vol. 62,
no. 4, pp. 1797–1812, 2017.

[12] Y. Ge, P. Van Goor, and R. Mahony, “Equivariant Filter Design for
Discrete-time Systems,” Proceedings of the IEEE Conference on Deci-
sion and Control, vol. 2022-December, pp. 1243–1250, 2022.

[13] P. Chauchat, A. Barrau, and S. Bonnabel, “Invariant smoothing on
Lie Groups,” IEEE International Conference on Intelligent Robots and
Systems, pp. 1703–1710, 12 2018.

[14] P. Chauchat, S. Bonnabel, and A. Barrau, “Invariant Smoothing with
low process noise,” Proceedings of the IEEE Conference on Decision
and Control, vol. 2022-December, pp. 4758–4763, 2022.

[15] ——, “Invariant Smoothing for Localization: Including the IMU Biases,”
arXiv:2309.13903, 9 2023.

[16] T. Lupton and S. Sukkarieh, “Efficient integration of inertial observations
into visual SLAM without initialization,” 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2009, pp. 1547–
1552, 12 2009.

[17] ——, “Visual-inertial-aided navigation for high-dynamic motion in
built environments without initial conditions,” IEEE Transactions on
Robotics, vol. 28, no. 1, pp. 61–76, 2 2012.

[18] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1–21, 2 2017.

[19] K. Eckenhoff, P. Geneva, and G. Huang, “Closed-form preintegration
methods for graph-based visual–inertial navigation,” The International
Journal of Robotics Research, vol. 38, no. 5, pp. 563–586, 2019.

[20] Y. Yang, B. P. Wisely Babu, C. Chen, G. Huang, and L. Ren, “Analytic
Combined IMU Integration (ACI2) For Visual Inertial Navigation,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 4680–4686.

[21] H. Tang, T. Zhang, X. Niu, J. Fan, and J. Liu, “Impact of the Earth
Rotation Compensation on MEMS-IMU Preintegration of Factor Graph
Optimization,” IEEE Sensors Journal, vol. 22, no. 17, pp. 17 194–17 204,
9 2022.

[22] M. Brossard, A. Barrau, P. Chauchat, and S. Bonnabel, “Associating
Uncertainty to Extended Poses for on Lie Group IMU Preintegration
With Rotating Earth,” IEEE Transactions on Robotics, vol. 38, no. 2,
pp. 998–1015, 2021.

[23] S.-H. Tsao and S.-S. Jan, “Analytic IMU Preintegration That Associates
Uncertainty on Matrix Lie Groups for Consistent Visual–Inertial Navi-
gation Systems,” IEEE Robotics and Automation Letters, vol. 8, no. 6,
pp. 3820–3827, 2023.

[24] Y. Wang, Y. Ng, I. Sa, A. Parra, C. Rodriguez-Opazo, T. Lin, and H. Li,
“MAVIS: Multi-Camera Augmented Visual-Inertial SLAM using SE2(3)
Based Exact IMU Pre-integration,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 1694–1700, 2024.

[25] P. van Goor, T. Hamel, and R. Mahony, “Constructive Equivariant
Observer Design for Inertial Navigation,” IFAC-PapersOnLine, vol. 56,
no. 2, pp. 2494–2499, 1 2023.

[26] M. Fourmy, D. Atchuthan, N. Mansard, J. Sola, and T. Flayols, “Absolute
humanoid localization and mapping based on IMU Lie group and
fiducial markers,” IEEE-RAS International Conference on Humanoid
Robots, vol. 2019-October, pp. 237–243, 10 2019.

[27] P. Maisser, “Marsden, J. E.; Ratiu, T. S.: Introduction t o Mechanics and
Symmetry. A Basic Exposition of Classical Mechanical Systems. New
York etc., Springer-Verlag 1994. XV, 500 pp., 43 figs., DM 69.–. ISBN
3-540-94347-1 (Texts in Applied Mathematics 17),” ZAMM - Journal
of Applied Mathematics and Mechanics, vol. 76, no. 1, 1996.

[28] M. De Montigny, J. Niederle, and A. G. Nikitin, “Galilei invariant the-
ories: I. Constructions of indecomposable finite-dimensional representa-
tions of the homogeneous Galilei group: directly and via contractions,”
Journal of Physics A: Mathematical and General, vol. 39, no. 29, p.
9365, 7 2006.

[29] J. Kelly, “All About the Galilean Group SGal(3),” arXiv:2312.07555,
12 2023.

[30] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
https://doi.org/10.1177/0278364915620033, vol. 35, no. 10, pp. 1157–
1163, 1 2016.

[31] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory for state
estimation in robotics,” arXiv:1812.01537, 12 2018.

[32] R. W. Brockett and H. J. Sussmann, “Tangent bundles of homogeneous
spaces are homogeneous spaces,” Proceedings of the American Mathe-
matical Society, vol. 35, no. 2, pp. 550–551, 1972.

[33] Y. Ng, P. Van Goor, T. Hamel, and R. Mahony, “Equivariant Observers
for Second-Order Systems on Matrix Lie Groups,” IEEE Transactions
on Automatic Control, vol. 68, no. 4, pp. 2468–2474, 4 2023.

[34] A. Fornasier, “Equivariant Symmetries for Aided Inertial Navigation,”
arXiv:2407.14297, 7 2024.

[35] M. Bloesch, M. Hutter, M. Hoepflinger, S. Leutenegger, C. Gehring,
C. David Remy, and R. Siegwart, “State Estimation for Legged Robots
- Consistent Fusion of Leg Kinematics and,” Robotics: Science and
Systems VIII, 7 2012.

[36] G. Delama, A. Fornasier, R. Mahony, and S. Weiss, “Equivariant IMU
Preintegration with Biases: a Galilean Group Approach,” arXiv preprint
arXiv:2411.05548, 11 2024.

[37] R. Mahony, P. Van Goor, and T. Hamel, “Observer Design for Nonlinear
Systems with Equivariance,” https://doi.org/10.1146/annurev-control-
061520-010324, vol. 5, pp. 221–252, 5 2022.

[38] X. R. Li, Z. Zhao, and X. B. Li, “Evaluation of Estimation Algorithms:
Credibility Tests,” IEEE Transactions on Systems, Man, and Cybernetics
Part A: Systems and Humans, vol. 42, no. 1, pp. 147–163, 2012.

[39] C. Brommer, A. Fornasier, M. Scheiber, J. Delaune, R. Brockers,
J. Steinbrener, and S. Weiss, “The INSANE dataset: Large number of
sensors for challenging UAV flights in Mars analog, outdoor, and out-
/indoor transition scenarios,” International Journal of Robotics Research,
vol. 43, no. 8, pp. 1083–1113, 7 2024.


	Introduction and Related Work
	Notation and Mathematical Preliminaries
	Lie theory and matrix Lie groups
	Semi-direct product and left-trivialized tangent group
	Useful matrix Lie groups

	The Galilean Group
	Equivariant IMU preintegration
	Biased Inertial Navigation System (INS)
	Discrete-time IMU preintegration
	Symmetry of the preintegration problem
	Linearization of the error dynamics
	Bias update and practical implementation

	Experiments and Results
	Simulation
	Real-world IMU data

	Conclusion
	References

