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AIVIO: Closed-loop, Object-relative Navigation of
UAVs with AI-aided Visual Inertial Odometry
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Abstract—Object-relative mobile robot navigation is essential
for a variety of tasks, e.g. autonomous critical infrastructure
inspection, but requires the capability to extract semantic infor-
mation about the objects of interest from raw sensory data. While
deep learning-based (DL) methods excel at inferring semantic
object information from images, such as class and relative
6 degree of freedom (6-DoF) pose, they are computationally
demanding and thus often not suitable for payload constrained
mobile robots. In this letter we present a real-time capable
unmanned aerial vehicle (UAV) system for object-relative, closed-
loop navigation with a minimal sensor configuration consisting of
an inertial measurement unit (IMU) and RGB camera. Utilizing
a DL-based object pose estimator, solely trained on synthetic
data and optimized for companion board deployment, the object-
relative pose measurements are fused with the IMU data to
perform object-relative localization. We conduct multiple real-
world experiments to validate the performance of our system for
the challenging use case of power pole inspection. An example
closed-loop flight is presented in the supplementary video.

Index Terms—AI-Based Methods, Vision-Based Navigation,
Autonomous Vehicle Navigation, Object-relative Localization

I. INTRODUCTION

Semantic navigation describes the robots ability to
maneuver and perform tasks based on contextual information
from its environment. Object-relative localization, one of the
core disciplines of semantic navigation, is essential for a
variety of mobile robot applications such as infrastructure
inspection and object tracking. Both tasks require the mobile
robot to extract semantic information from its onboard
sensors, i.e., detecting objects of interest and estimating their
6 degree of freedom (6-DoF) pose. In recent years, unmanned
aerial vehicles (UAVs) gained a lot of popularity for mobile
robot applications due to their ability to freely move in 3D
space. While this allows for the deployment in a variety of
scenarios, it comes at the cost of constraints, i.e. weight,
size, amount of sensors and computational power. Moreover,
UAVs require constant control inputs based on reliable and
rapid state estimates to perform even simple maneuvers
such as hovering. Therefore, to guarantee fully autonomous,
closed-loop navigation, i.e. applying control inputs based on
the current state estimate to follow a trajectory, algorithms
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Fig. 1. Experimental setup of a mock-up power pole with three insulators in
our research laboratory. Moreover, we visualize a trajectory in red representing
an inspection flight. Bottom left: Our mobile robot platform of choice, a
quadcopter equipped with a PX4, an RGB camera and an NVIDIA Jetson.

and sensor processing need to run in real-time onboard the
UAV, which requires efficient and optimized methods.

Fusing information from multiple sources, i.e. sensors, is
necessary to guarantee reliable and accurate state estimates.
Inertial measurement units (IMUs) provide UAVs with linear
acceleration and angular velocity measurements at a high
frequency. Solely relying on IMUs for state estimation is not
feasible as this would lead to drift and thus UAVs often rely
on GNSS for localization and navigation in outdoor scenarios.
The need for GNSS-free state estimation arises due to possible
signal deterioration caused by large structures or multipathing.
Infrastructure inspection applications require precise, object-
relative navigation capabilities down to the centimeter range
to reliably position the UAV for accurate analysis. This cannot
be achieved with the measurement accuracy of GNSS. While
classical sensor fusion considering other sensor modalities,
e.g. cameras or radar, allow for robust and precise state
estimation, i.e. Visual-Inertial Odometry (VIO) [1] and
Radar-Inertial Odometry (RIO) [2] respectively, they do not
provide any semantic information about the current scene.

Deep learning (DL) excels at extracting semantic infor-
mation from raw sensory data, particularly for image-based
perception tasks including object detection, classification and
6-DoF object pose estimation. The latter provides metric
information about objects present in the scene which can
also be used for object-relative localization, building the
foundation for semantic navigation in inspection tasks. DL-
based methods are usually computationally intensive, and the
real-time capability necessary for closed-loop navigation is
often not given. This problem is even more pronounced in the
case of deployment on edge devices. We utilize optimization
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techniques and a computationally light DL-based object pose
estimator to address this issue.

In this letter, we present a real-time capable system for
object-relative UAV flights. We consider a minimal sensor
configuration consisting of a single RGB camera and an IMU,
allowing our approach to be used on a wide variety of resource
constrained mobile robots. We investigate our approach in the
context of power pole infrastructure inspection with insulators
as our objects of interest. Infrastructure inspection is crucial
to ensure safety, prevent failures, and maintain the reliability
and longevity of essential public systems and services. The
UAV performs an object-relative inspection flight by solely
relying on IMU measurements and relative-pose measurements
to the insulators, without any prior knowledge about their
location or additional sensors, e.g. GNSS. Our experimental
setup, the inspection trajectory and our UAV are presented in
Fig. 1. Training DL methods is resource and data intensive.
Especially the latter poses a problem if suitable datasets are not
available. While there exist methods for the semi-automatized
annotation of 6-DoF pose datasets [3], they either require a
motion capture system (MoCap) or initial human input. On
the other hand, simulation software allows for the efficient
and automated generation of large datasets that also capture
the environmental diversity present in infrastructure inspection
tasks. It is important to note that, even though we focus
solely on power poles throughout this letter, our approach is
applicable to many object-relative localization and navigation
scenarios, in which the 6-DoF pose of the objects of interest
is well-defined. Our contributions are the following:
• UAV system for object-relative, closed-loop navigation.
• Onboard accurate 6-DoF object-relative localization by

fusing estimated DL-based 6-DoF object-relative poses from
images with IMU measurements.

• Illustration of the Sim2Real transfer capabilities of the
6-DoF object-relative pose estimator solely trained on
simulated data.

• Development of a camera-agnostic approach by performing
a homography to map between different camera parameters.

• Validation of the proposed system by conducting several real
world experiments to show the accuracy and performance.

The remainder of this letter is structured as follows. In
Section II, we summarize the related work regarding object-
relative localization in mobile robotics. In Section III, we
present our system including the hardware and software
setup, the 6-DoF object pose estimator and state estimator.
In Section IV, the experiments and the corresponding results
are discussed. Finally, the letter is concluded in Section V.

II. RELATED WORK

In mobile robotics, navigation requires accurate state es-
timation and it typically involves merging IMU data with
one or more sensors like GNSS. While GNSS offers global
position information, but lacks 3D orientation data, it still can
be used to estimate the attitude of a robot by combining it
with IMU measurements [4]. In the absence of GNSS signals,
Visual-Inertial Odometry (VIO), which combines a monocular
camera with IMU data, can determine the robot’s pose by
triangulating the camera’s position using image features and

estimating the scale factor with inertial data [5]. Nonetheless,
the vision pose is prone to drift in position over time. In-
tegrating multiple sensors enhances the accuracy, reliability
and robustness of the state estimate. Two primary approaches
for sensor fusion exist: recursive, filter-based methods and
optimization-based techniques. Although optimization-based
methods can provide more precise state estimates, they are
computationally intensive due to optimizing across multiple
sensor measurements [6]. In contrast, filter-based methods like
Extended Kalman Filters (EKF) are computationally efficient,
making them suitable for mobile robotics applications [7].

Classical VIO works on raw image features contained in the
image that do not provide any information about the objects
of interest present in the environment and thus is not suited
for object-relative state estimation and localization. However,
methods for estimating the relative 6-DoF object pose from
images can be employed as a pose sensor within a state estima-
tion framework [8]. DL-based methods for monocular 6-DoF
pose estimation of known objects differ in the number of view-
points, input modalities, and 3D object model usage. While ob-
serving the object from multiple points of view introduces con-
straints on its pose [9], utilizing depth maps as an additional
input provides the network with preliminary object distances
[10]. The availability of 3D object models allows for the itera-
tive refinement of an initial guess [11] or the matching of key-
points [12]. Even though this additional information benefits
the estimation process, they often require either additional sen-
sors or are computationally more complex compared to their
single-view, RGB-only counterparts. The 6-DoF multi-object
pose estimation framework PoET [13], which we recently pre-
sented, only requires a single RGB image as input and does not
require any extra information during training or inference. It
achieves state-of-the-art performance on benchmark datasets.

Earlier research on vision-based, object-relative state esti-
mation for UAVs utilizes geometrical features of the object to
determine its pose. Thomas et al. [14] presented an approach
for localization relative to cylindrical objects of interest by
assuming the radius to be known. Similarly, Loianno et al. [15]
used the parametric description of ellipses to detect objects of
interest in the image and determine their pose based on their
visual appearance, e.g., size, and camera parameters. Mean-
while, Máthé et al. [16] utilized classical methods to determine
6-DoF object poses for object-relative pose estimation, while
also investigating the possibility of using machine learning to
detect the presence of objects in the image.

An alternative to object-relative state estimation based on
the geometric features of objects is to attach markers to
them. Due to the predefined characteristics of these markers,
their visual appearance can be used to directly derive their
relative pose to the robot. For example, in [17] a UAV’s pose
relative to a perching target was estimated by constantly fusing
relative pose measurements from two ArUco markers in a
Kalman filter. VI-RPE [18] showcased the ability to navigate
a UAV relative to a target UAV equipped with a LED marker
configuration. The authors used an RGB camera to determine
the relative pose of the UAV and fused this measurement with
IMU data for object-relative state estimation. Both [19] and
[20] equip a landing platform with a human-made mark for
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Fig. 2. Schematic overview of the hardware and software components and
their interaction. The CNS Flight Stack [21] is responsible for handling high-
level autonomy and communication with the PX4. We utilize PoET [13],
a DL-based 6-DoF object pose estimator, to predict relative object pose
measurements given an input image from the RGB navigation camera. These
measurements are fused with IMU data in a state estimator for object-relative
localization. Moreover, the autonomy and state estimator allow for switching
between a global pose sensor and our object-relative landmark sensor and to
calculate trajectory waypoints based on the current estimate.

autonomous landing. The latter approach fuses the relative
pose between a UAV and a landing platform with GNSS and
IMU data in an EKF for accurate landing.

In our previous work [8], we presented the combination of
DL-based object-relative pose measurements with IMU mea-
surements for mobile robot 6-DoF multi-object-relative state
estimation. We present here an efficient implementation of our
previous work, trained in simulation for a realistic inspection
scenario, and deployed on a real UAV for closed-loop semantic
navigation. We implemented a sensor switching mechanism
to allow for seamless transition between localization with a
global position sensor and our DL-based, multi-object-relative
pose sensor. This enables the UAV to approach the object of
interest using a global positioning system and then switch
to object-relative navigation once the object of interest is
in the proximity and field of view of the UAV. For object-
relative navigation, our approach does not require human-made
markers, prior knowledge about the object configuration or
information from a global positioning sensor.

III. METHOD

In this section, we present our approach. First, we explain
the notation that we use for the transformation of coordinate
frames. Second, the hardware setup is presented. Third, we
describe the deep-learning pose estimation framework, its
training and the deployment to the real hardware. Fourth, the
state estimation framework is introduced and the integration
with the DL-based relative pose sensor is outlined.
A. Notation

Given two coordinate frames A and B, the transformation of
frame B with respect to frame A is defined by the translation
pAB and rotation RAB. I3 and 03 refer to the identity and the
null matrix in R

3x3, respectively. Alternatively, a rotation is
expressed by a quaternion qAB = [qv qw]

T = [qx qy qz qw]
T .

The quaternion multiplication is represented by ⊗.

B. Hardware & Software Setup

Our hardware setup, as depicted in the bottom left corner
of Fig. 1, consists of a TWINs Science Copter1 platform
equipped with a Pixhawk PX4 autopilot, an IDS U3-3276LE-
C-HQ RGB camera with a 2 MP, 2.95 mm focal length lens

1https://www.twins.co.at/en/en-twinfold-science/

TABLE I
DL MODEL COMPARISON FOR DIFFERENT SIZES, OPTIMIZATION AND

FLOATING POINT PRECISION ON THE SYNTHETIC TEST DATASET.

Model Avg TE [m] Avg RE [°] Max TE [m] # Not Detected FPS

Torch 0.031 1.52 0.883 1992 9
TRT FP32 0.031 1.83 0.745 2060 14
TRT FP16 0.031 1.84 0.763 2065 33
Torch Small 0.037 1.60 0.793 1927 13
TRT Small FP32 0.038 1.94 0.816 2079 22
TRT Small FP16 0.039 1.93 0.798 2082 50

(angle of view: D:178◦, H:138◦, V:104◦), and an NVIDIA Jet-
son Orin AGX 64GB DevKit serving as the onboard computer.
The IMU of the PX4 is used as the propagation sensor in our
EKF and provides measurements at 200Hz. The RGB camera
captures the raw images at a resolution of 1280x960 with up to
50 fps. During the launch of the camera, automatic white bal-
ance and gain adjustment is performed once, while automatic
exposure control is turned off. The Orin is running on JetPack
5.1.2. For deployment of the DL networks, TensorRT 8.5.2,
CUDA 11.4, and PyTorch 2.0 is used. The PX4 is connected to
pins 6 (Ground), 9 (UART1_TX) and 10 (UART2_RX) of the
40 head pin of the Orin and communicates over UART and the
RGB camera is connected with USB3 to the Orin. We run the
CNS Flight Stack [21] on our onboard computer for high-level
autonomy, control, mission management, safety monitoring,
and data recording. The CNS Flight Stack’s modularity and
ROS interfaces allow us to seamlessly integrate our sensors
and state estimator into the whole stack to conduct autonomous
UAV flights. An overview of the hardware and software
components and their interaction is depicted in Fig. 2.

C. Online DL-based 6-DoF Relative Pose Estimation

Deployment of computationally intensive, DL-based meth-
ods on mobile robots is an ongoing challenge due to their
payload limitations. Therefore, we chose our object pose
estimation framework PoET [13] as it only uses RGB images
and does not rely on depth information, removing the need
for additional sensors, or 3D object models, thus reducing
computational complexity. Given a single input image, PoET
detects all objects of interest and predicts the relative 6-DoF
pose between the camera and the objects.

To train our DL-based object-relative pose estimator we
make use of the possibility of efficiently generating images
of objects of interest with simulation software. By relying
solely on simulated data, the here presented approach can
be easily adapted to any kind of inspection task without the
need of exhaustive real-world data collection and annotation.
We utilize NVIDIA Omniverse IsaacSim2 to simulate images
of power poles and automatically annotate the relative 6-DoF
pose of the insulators, as they are our objects of interest for the
object-relative navigation. The individual components of the
power pole are modeled in Blender and loaded into Isaac Sim
during data generation. Besides randomized relative 6-DoF
poses and the automatic annotation of the generated images,
IsaacSim allows the addition of randomly moving distractor
objects and a variety of randomization such as environment,
background, lighting conditions, the material of objects, and
the geometrical properties of the power pole in order to prevent

2https://developer.nvidia.com/isaac/sim
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Fig. 3. Visualization of the homography mapping between two different
camera parameters. Note, the original sizes of the images are 1280 x 960
and 640x480, respectively for the left and right image.

overfitting to specific scenarios and geometric properties of
the power pole. We generate 100,000 images for training and
20,000 images for validation with varying the distance to the
power pole between 2.5m and 4.5m. The chosen resolution is
640x480. An example image can be seen on the left in Fig. 3.

For PoET we chose Scaled-YOLOv4 [22] as our backbone
object detection network, and our base-model transformer
consists of five encoder and decoder layers with 16 attention
heads (Torch). PoET is trained class agnostic for 50 epochs
and achieves an average translation and rotation error on the
test set of 3.1 cm and 1.52◦, respectively. The training takes
about 60h on a single NVIDIA GeForce RTX 3090. We also
trained a smaller network with only three encoder/decoder
layers and 8 attention heads (Torch Small). It is important
to note that even though the insulators have rotational
symmetries around their z-axis, PoET can accurately estimate
the relative orientation, despite being only provided the 6-DoF
pose of the insulators during training. As PoET consists of
a multi-head attention transformer it is able to incorporate
global image context information into the pose estimation
process. Hence, PoET learns the asymmetric geometry of
our power pole and utilizes this information to estimate the
correct orientation of the insulators.

Using TensorRT (TRT) we optimize both models for de-
ployment on the NVIDIA Jetson AGX Orin either with full-
(FP32) or half-precision (FP16). In Table I, we compare the
six models with each other evaluated on the synthetic valida-
tion dataset consisting of 20,000 images with 54,104 objects in
total. The comparison metrics are the translation error (TE) and
rotation error (RE), given by the Euclidean and geodesic dis-
tance respectively. Moreover, we compare the models in terms
of the number of missed detections and frames per second.

We observe that the smaller networks have a slightly higher
average error than their counterparts. Furthermore, the opti-
mization with TensorRT has an influence on the performance
of the network with respect to the average error. The lower
maximum translation error for the optimized models is due to
higher number of undetected objects. It appears that the TRT
models are not able to detect the insulators in some difficult
cases, which might result in wrong predictions and thus high
errors. On the other hand, hardware specific optimization
allows for higher throughput of images and thus reduced com-
putational load. Therefore, TRT Small FP16 is our PoET
model of choice for the real-world experiments as it has the
lowest processing time while still achieving satisfying results.
It minimizes the computational load with acceptable impact on
the accuracy of the prediction. In Fig. 4, the predictions of the

Fig. 4. Reprojection of the 6-DoF object poses predicted by PoET (TRT
Small FP16) for our real-world scenario (left) and a synthetic image
(right). Note that the black border for the real image is due to the
homography mapping between different camera parameters.

chosen model are visualized for our real world scenario as well
as for a synthetic image by reprojecting the 3D object model
based on the predicted relative 6-DoF object poses. As can
be seen, there is a high correspondence between reprojected
insulators and the images, emphasizing the applicability of
PoET, solely trained on synthetic data, to real images.

The 6-DoF relative object poses predicted by PoET will be
used as measurements in our state estimator, as described in
the subsequent subsection. To perform closed-loop navigation,
we aim to provide the state estimator measurements at a rate of
at least 15 Hz to avoid long duration of IMU propagation. Even
though our model of choice achieves 50 fps on the NVIDIA
Jetson AGX Orin, we limit the frame rate to 15 fps for our
real-world experiments. This guarantees a sufficiently high
measurement update rate, while limiting the computational
load on the onboard computer.

D. Image Homography for Camera-Agnostic Pose Estimation

RGB-only 6-DoF object-relative pose estimation requires
that the network is trained and evaluated on images with the
same camera parameters. This is not feasible for many real-
world applications as this would require an identical camera
setup to be used for data collection and network deployment
on a mobile robot. In order to mitigate this issue and to
make the trained network compatible with any RGB camera,
a homography is used to relate the images taken by the
navigation camera with camera matrix K̂ to camera matrix
K that was used to generate the images in simulation for
network training. The homography H representing a projective
transformation between a target camera matrix K and a source
camera matrix K̂ is given by

H = T Ĥ = T KK̂−1 (1)

T =





1 0 uo

0 1 vo

0 0 1





, (2)

where uo and vo are the pixel offsets between the target image
center (utc,vtc) and the projected source image center. The
projected source image center (upc,vpc) can be calculated by
projecting the source image center (usc,vsc) with Ĥ





upc

vpc

1



=





u

v

s



= Ĥ





usc

vsc

1





. (3)

To validate the homography approach, we generate 1.000
synthetic images with a camera intrinsic matrix differing from
the training dataset by ∼ 2× the focal length, doubling the
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TABLE II
DL MODEL COMPARISON FOR OUR HOMOGRAPHY APPROACH TO MAP

BETWEEN DIFFERENT CAMERAS.

Model Avg TE [m] Avg RE [°] Max TE [m]

Torch 0.042 2.16 0.903
TRT FP32 0.044 2.72 0.609
TRT FP16 0.044 2.74 0.594
Torch Small 0.054 2.21 0.936
TRT Small FP32 0.056 2.74 0.925
TRT Small FP16 0.057 2.72 0.994

image size and adjusting the principle point offset. In Table II
we compare the error metrics for the six networks and in Fig. 3
the result of the homography is visualized. Across all models,
we observe an increased average translation and rotation
error compared to models that were trained and evaluated on
images with the same camera intrinsics. However, taking into
consideration that the minimum distance to the power pole is
2.5 m, the average translation error is only about 2% or 5.7 cm.
In Section IV, we further show that our approach is camera-
agnostic by utilizing this homography approach to map images
from the real navigation camera for closed-loop navigation.

E. Object-relative State Estimation

The goal is to estimate the pose of the IMU (I), our
propagation sensor, with respect to the navigation world (W )
by measuring the relative 6-DoF poses between the navigation
camera (C) and a set of objects of interest (Ok), which are
provided by our DL-based pose estimator dubbed PoET. We
use MaRS [7] for multi-sensor fusion and state estimation due
to it being developed with mobile robots in mind, hence being
lightweight and computationally efficient. In our previous
work on AI-based multi-object-relative state estimation [8], we
introduced the concept of a multi-pose landmark sensor that
benefits from concurrently processing multiple relative pose
measurements during an EKF update step. We kindly refer
the reader to this work for additional insights. Assuming that
N objects are present in the scene, the state vector X is given
by

X = [pT
WI,v

T
WI,q

T
WI,b

T
ω
,bT

a , (4)

pT
IC,q

T
IC,p

T
O0W ,q

T
O0W , . . . ,p

T
ONW ,q

T
ONW ]

T
,

with the core states for state propagation being the position
pWI of the IMU, its velocity vWI and its orientation qWI as
well as the gyroscopic bias bω and the accelerometer bias ba.
We estimate the calibration between the IMU and the camera
given by pIC and qIC . Additionally, we estimate object-worlds
(pOkW ,qOkW ) that relates the object frame to the navigation
world. The system dynamics are given by [5]

ṗWI = vWI (5)

v̇WI = RWI (am −ba −na)−g (6)

q̇WI =
1
2

Ω(ωb −bω −nω) qWI, (7)

where am is the measured acceleration in the IMU frame,
na is the accelerometer noise parameter, g is the gravity
vector in W , ωb is the measured angular velocity in the IMU
frame, nω is the gyroscopic noise parameter, and Ω(ω) is the
quaternion multiplication matrix of ω . The IMU biases are
modeled as random walks.

In order to perform object-relative, closed-loop UAV nav-
igation, it is necessary that at least one object of interest is
in the field of view of the UAV. Therefore, the UAV will
take off and fly to a pre-defined start position using a global
position sensor, for example a GNSS sensor. Once the start
position is reached, the UAV hovers until it verifies that
the object of interest is in its field of view. Afterwards, the
global position sensor is switched off and the landmark sensor
for object-relative navigation is switched on, as visualized in
Fig. 5. This is possible due to the modularity of MaRS that
separates the propagation of the core state variables based on
inertial data from state updates based on the measurements
of the individual sensors. Not only does this allow for the
straightforward integration of new sensors, but also allows for
sensor switching while flying. When switching to the landmark
sensor, the pose of an insulator in the world (Ok) is initialized
in the filter with its first relative 6-DoF pose measurement and
based on the current estimated state of the the robot:

ROkW = ROkCRT
ICRT

WI (8)

pOkW = pOkC −ROkW (RWI pIC +pWI) (9)

It is important to highlight that for complete object-relative
state estimation it is necessary to fix one of the objects as
our anchor landmark (A). In our previous work [8] this was
achieved by setting the Jacobian of all states associated with
the anchor object (pOAW ,ROAW ) to zero and thus not updating
the states. In this work, we follow an alternative approach,
namely to perform pseudo measurements with close to zero
measurement noise for the states to be fixed during each update
state of the EKF. As it is possible to switch the anchor to a
different landmark, e.g., in case the original anchor landmark
moves out of the field of view, the current estimated object
world (pOkW ,ROkW ) is stored as the fixed pseudo measure-
ment (p̂OAW , q̂OAW ). During each update step, the residual and
Jacobian for every object detected is calculated and stacked
according to [8] disregarding whether the object is the anchor
or not. Afterwards, the residual and Jacobian for the pseudo
measurement is calculated to extend the residual and Jacobian
from the regular update step. It is important to note that we
perform the pseudo measurement only for the position and
yaw of the anchor object pose, hence allowing the roll and
pitch angles to continue to change. The reason for this is that
wrongly initialized pitch and roll of the anchor object in the
world will lead to an accumulation of IMU biases, which is
not favourable for state estimation. The residual and Jacobian
for the pseudo measurement are given by

z̃pOAW
= pOAW − p̂OAW (10)

z̃ROAW
= 2

z̃qv,OAW

z̃qw,OAW

(11)

z̃qOAW
= q̂−1

OAW ⊗qOAW (12)

Hp,pOAW
= I3 (13)

HR,ROAW
=





0 0 0
0 0 0
0 0 1



 (14)

The remaining Jacobians for the fixed pseudo measurement
with respect to the core states and other object are set to 03.
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Fig. 5. Schematic representation of our proposed object-relative navigation
workflow. The objects of interest, e.g. infrastructure, are approached using
global navigation. As soon as the objects of interest are detected, the UAV
switches to object-relative navigation by estimating the states of the objects.
While the global reference frame is discarded, one of the detected objects is
fixed as a reference frame to render the problem observable. Once the object-
relative navigation is done, the UAV switches back to global navigation and
removes the object states from its estimation.

After switching to the landmark sensor, the object-relative
flight trajectory is calculated in the navigation world (W )
based on the state of the anchor landmark and a pre-defined
inspection mission. The waypoints are provided to the mission
sequencer of the CNS Flight Stack, see Fig. 2.

In contrast to our previous work [8], where we assumed that
the objects of interest belong to different classes, in this work
the insulators are identical and thus not distinguishable by
class. To mitigate this issue, the landmark sensor is extended
with measurement matching using a Hungarian algorithm [23]
to perform a 1-to-1 matching between incoming relative 6-DoF
object pose measurements and the landmarks already initial-
ized in the filter. Given the relative object pose measurements
and the current estimated robot pose, the landmark is projected
into the world frame and matched to the stored landmark poses
based on the distance. As the number of landmark objects is
fixed beforehand in the state vector, the result of the measure-
ment matching can be used to either discard measurements or
to initialize one of the remaining object worlds in the filter. Ad-
ditionally, we perform a χ

2-test for each individual landmark
during the update step to reject outliers within the multi-pose
measurement. Even though the extrinsic parameters between
the IMU and camera are part of our state vector, we do not esti-
mate them but rather determine them during a calibration step.

After completion of the inspection task, the UAV flies far
enough from the infrastructure to switch back to a global posi-
tion sensor, in order to perform the next task in the overarching
mission plan. Potential estimation errors accumulated during
object-relative navigation are mitigated by reinitializing the
global pose sensor with a measurement reference state that
captures the offset between the current estimate and the first
measurement. A schematic overview of the switching between
global and object-relative navigation is presented in Fig. 5.

IV. EXPERIMENTS & RESULTS

In this section, we present the conducted real-world
experiments mimicking the challenging use case of power pole
inspection in the wild and discuss their results. First, we record
data with the real system to perform offline state estimation.
Second, we conduct multiple DL-based, object-relative, closed
loop flights and assess the performance of our approach. The
ground truth information for the state estimation evaluation
is given by our MoCap system and recorded at 60 Hz.
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Fig. 6. Translation (top) and rotation (middle) error of the raw PoET
measurements for the left insulator along the whole trajectory using synthetic
images at 15 fps. We additionally visualize the ground truth yaw orientation
of the UAV (bottom) to emphasize the current viewpoint.

TABLE III
AVERAGE POSITION/AXIS ANGLE ERROR FOR HOVERING 30S INFRONT OF

THE POWER POLE FOR DIFFERENT DISTANCES/YAW ANGLES.

Distance/Angle 0° 25° 50°

3.0m 0.049m / 1.15° 0.071m / 1.76° 0.033m / 1.49°
3.3m 0.052m / 1.74° 0.064m / 1.64° 0.040m / 1.29°
3.6m 0.084m / 3.45° 0.111m / 1.86° 0.045m / 1.47°

A. Object-relative State Estimation

In order to solely evaluate the performance of our state es-
timator, avoiding undesirable behavior and corrections caused
through wrong estimates in closed-loop flight, we first con-
ducted two MoCap-based experiments with the real system
introduced in Section III-B and performed offline sensor fusion
and state estimation. For both experiments, we report the root
mean squared error (RMSE) for the position and the orientation
as well as the maximum position error (PE). First, we let
the UAV hover for 30 seconds at certain distances and under
specific yaw angles with respect to the power pole. The idea
is to look into the effect of the viewpoint on the performance
of the state estimator. As presented in Table III, the RMSE for
position and orientation increases with distance to the power
pole for all viewing angles. On the other hand, the results for
different viewing angles indicate that the appearance of the
power pole in the image has an effect on the consistency of
the predictions from PoET. A possible explanation is that with
an increased viewing angle the baseline formed by the power
pole is larger and thus benefiting the depth estimation and the
pose estimate in general.

Second, as depicted in Fig. 1, we define an arc trajectory
around the power pole, simulating an inspection flight. The
UAV takes off, hovers for about 10 seconds and then flies
around the power pole on an arc at fixed distance d and
height h until it reaches ±50◦ in yaw from its starting orienta-
tion, while keeping the power pole centered in the navigation
camera. We would like to point out that even though the
exact trajectory performed would not be possible in a real-
world scenario due to the presence of live power lines, it
can be easily adapted to meet these constraints. The focus
of the current work lies on evaluating the performance of our
proposed approach with a simple and reproducible trajectory.
To that end, we repeated this flight seven times with distance
d = 3.3 m, height h = 2.0 m, and recorded sensor data for
offline evaluation as well as MoCap data for ground truth
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Fig. 7. Comparison between the state estimate (mars) and the ground truth (gt) for position (left) and orientation (right) for a closed-loop flight. Note,
the black dotted line indicates the exact time switching between global navigation and object-relative navigation. We can observe that the estimator is able to
accurately track its state.

comparison. It is important to note, that our DL-based pose
estimator was running onboard of the UAV and we recorded its
predictions as well. Additionally, we utilized ground truth data
to simulate the recorded trajectories in IsaacSim to generate
images to investigate the influence of the Sim2Real transfer
on the estimation performance. After generating the images,
we processed them with PoET on the UAV onboard computer
and stored the estimated relative 6-DoF object poses. These
synthetically generated pose measurements were fused with
the collected real-world IMU data as a comparison experiment.

Based on the results from the homography comparison, see
Table II, and the hover experiment, see Table III, we set
the measurement noise to 10 cm and 5◦ for all three axis
of position and rotation respectively. In Fig. 6, we plot the
translation and rotation error given the raw, DL-based pose
measurements for the left insulator for one of the IsaacSim
trajectories. We can see that the position measurements are
quite noisy across the complete trajectory, except for the period
where the UAV is close to the insulator, around image 400.
Especially when hovering in front of the power pole, the raw
position measurement can be up to 8 cm off for the simulated
data. Depending on the moment of switching to object-relative
navigation, the object could be wrongly initialized in the
filter thus substantially impacting the estimation performance.
Therefore, and due to possible errors introduced by Sim2Real,
we chose the measurement noise slightly higher than the
observed maximum errors. While the left and right insulator
will be at one point of the trajectory closer to the UAV, the
insulator at the top of the power pole is at the center of the arc,
has a constant distance to the UAV and thus a more consistent
error. Hence, we chose the top insulator as our fixed object
in the EKF for all experiments. Even though switching the
anchor landmark is possible, we kept the top insulator as our
fixed landmark throughout the whole trajectory. In Table IV
the results for offline trajectory evaluation are presented. For
evaluation, we only consider the segments during which the
UAV performed object-relative state estimation, namely after
the end of the hover phase. Our approach achieves the same
mean RMSE for the position for the real world images as
well as the simulated images. In terms of the mean RMSE
for orientation and mean maximum position error, a similar

TABLE IV
RESULTS FOR OBJECT-RELATIVE STATE ESTIMATION USING RECORDED

IMU DATA AND EITHER REAL OR SYNTHETIC IMAGES AS INPUT TO OUR

DL-BASED OBJECT POSE ESTIMATOR. WE REPORT THE STD FOR THE

RMSE METRIC.

Flight
Real World Images Synthetic Images

RMSE [m] RMSE [°] Max PE [m] RMSE [m] RMSE [°] Max PE [m]

1 0.151 ± 0.06 5.85 ± 1.5 0.303 0.135 ± 0.05 4.23 ± 1.0 0.291
2 0.170 ± 0.09 4.13 ± 1.7 0.407 0.208 ± 0.07 5.48 ± 0.6 0.464
3 0.200 ± 0.08 3.66 ± 1.6 0.359 0.086 ± 0.04 2.23 ± 0.6 0.181
4 0.173 ± 0.05 2.57 ± 1.1 0.299 0.247 ± 0.14 6.38 ± 3.0 0.523
5 0.195 ± 0.07 3.49 ± 1.4 0.317 0.134 ± 0.06 4.64 ± 2.2 0.281
6 0.136 ± 0.06 3.20 ± 1.5 0.319 0.272 ± 0.15 8.67 ± 4.3 0.587
7 0.162 ± 0.07 2.98 ± 1.2 0.335 0.106 ± 0.04 2.22 ± 0.8 0.220

Mean 0.170 ± 0.07 3.70 ± 1.4 0.334 0.170 ± 0.08 4.84 ± 1.8 0.364

performance is achieved across the seven recorded flights.
However, we can observe that for individual flights the per-
formance differs when using real-world or synthetic images.
Overall, our state estimator achieves a lower orientation RMSE
and maximum position error with real images. The reason
for that might be due to time synchronization issues between
the IMU and the simulated images. Nonetheless, these results
confirm that the Sim2Real transfer in combination with the
homography between two different camera matrices is working
for object-relative state estimation.

B. Closed-loop Navigation

The previous experiments highlight that relative pose mea-
surements from a DL-based 6-DoF object pose estimator,
solely trained on synthetic data, can be used for object-relative
state estimation by fusing them with IMU data. With the
aim of showing that our system is capable of object-relative
navigation, we conducted ten closed-loop flights with onboard
processing and present the results in Table V. We considered
the same trajectory as described in Section IV-A and imple-
mented the waypoint calculation and sensor switching strategy
described in Section III-E. Based on the current estimated state
of the anchor landmark (pOAW ,ROAW ) and UAV (pWI,RWI) the
trajectory waypoints were calculated such that the distance was
kept fixed and the z-component corresponded to the UAV’s
current height. Similarly to the offline evaluation, we only
considered the object-relative part of the flight for the metric
calculation. Additionally, we increased the measurement noise
to 20 cm and 10◦ for position and orientation respectively to
account for possible errors introduced through flight dynamics.
We observe a similar performance across the closed loop
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TABLE V
RESULTS FOR CLOSED-LOOP, OBJECT-RELATIVE NAVIGATION. WE

REPORT THE STD FOR THE RMSE METRIC.

Flight RMSE [m] RMSE [°] Max PE [m]

1 0.127 ± 0.06 2.79 ± 1.3 0.319
2 0.147 ± 0.05 3.34 ± 1.6 0.300
3 0.123 ± 0.06 2.72 ± 1.4 0.328
4 0.110 ± 0.05 3.17 ± 1.6 0.264
5 0.153 ± 0.07 3.49 ± 1.4 0.425
6 0.131 ± 0.05 2.70 ± 1.3 0.464
7 0.140 ± 0.08 2.53 ± 1.2 0.448
8 0.138 ± 0.06 2.61 ± 1.1 0.272
9 0.149 ± 0.08 2.65 ± 1.2 0.358

10 0.136 ± 0.07 3.54 ± 1.4 0.410
Mean 0.135 ± 0.06 2.95 ± 1.3 0.359

flights when compared to the offline evaluation. However, the
estimator is more prone to having a higher maximum position
error when performing closed-loop navigation. In Fig. 7, we
compare the estimated state of the UAV to the ground truth
for position and orientation. As we can see, the UAV was able
to correctly estimate its state for the entirety of the trajectory,
except for a small segment where the power pole was viewed
from the side. Our experiments show that we can conduct
closed-loop flights and reliably reproduce the state estimation
performance across multiple runs. An example closed-loop
flight is presented in the supplementary video.

V. CONCLUSION

In this letter, we presented a real-time capable UAV system
for semantic, closed-loop, object-relative navigation with
onboard processing of all information and a minimal sensor
configuration. Semantic navigation is essential for tasks like
object following or infrastructure inspection. Object-relative
localization is achieved by fusing DL-based, relative 6-DoF
object pose measurements with IMU data, not requiring any
additional sensors. However, it relies on the objects of interest
being in the field of view of the navigation camera and thus
requiring a safety system. Training such DL-based methods is
data intensive as it requires large sets of precisely annotated
images. We showcased that a DL-based network solely trained
on synthetic images and made camera-agnostic through
mapping between different camera parameters achieves
satisfying performance on real-world data. In combination
with the minimal sensor configuration, our proposed approach
is quickly adaptable to a variety of tasks and mobile robot
platforms. In order to realize a real-time capable, autonomous
system, we optimized our DL-based 6-DoF pose estimator for
the target hardware and implemented a sensor switching and
waypoint calculation mechanism taking into account the cur-
rent estimate. To validate our system, we conducted multiple
real-world experiments that represent infrastructure inspection
flights for power poles. In future work, we will conduct a
robustness analysis for increased flight speed regarding closed-
loop behavior, state estimation and object pose estimation.
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