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Abstract— In this paper, we present a Radar-Inertial Odome-
try (RIO) method based on the nonlinear optimization of factor
graphs in a sliding window fashion. Our method makes use
of a light-weight, low-power, inexpensive and commonly avail-
able hardware enabling easy deployment on small Unmanned
Aerial Vehicles (UAV)s. We keep the state estimation problem
bounded by employing partial marginalization of the oldest
states, rendering the method real-time capable. We compare
the implemented approach to the state-of-the-art multi-state
Extended Kalman Filter (EKF)-based method in a one-fo-one
fashion. That is, we implemented in a single custom C++
RIO framework both estimation back-ends with all other parts
shared and thus identical for a fair direct comparison. In the
real-world flight experiments, we compare the two methods
and show that both perform similarly in terms of accuracy
when the linearization point is not far from the true state.
Upon wrong initialization, the factor graph approach heavily
outperforms the EKF approach. We also acknowledge that the
influence of undetected outliers can overwhelm the inherent
benefits of the nonlinear optimization approach leading to the
insight that the estimator front-end has an important (and
often underestimated) role in the overall performance. The
open source code and datasets can be found here: https:
//github.com/aau-cns/aaucns_rio.

I. INTRODUCTION

Achieving accurate spatial awareness in Global Naviga-
tion Satellite System (GNSS)-denied environments is a key
component of reliably operating autonomous UAVs in many
scenarios. This problem is commonly approached by the fu-
sion of measurements from a combination of sensors within
a state estimation framework. Recently, fusing Frequency
Modulated Continuous Wave (FMCW) radar and Inertial
Measurement Unit (IMU) measurements has gained popu-
larity in the UAVs autonomy research. A setup composed
of these two sensors offers robustness against low-visibility
environments thanks to the properties of electromagnetic
waves used in radars [1], [2], and allows the IMU drift
reduction, enabling accurate ego-motion estimation even in
conditions challenging to camera or LiDAR-based setups.

Several kinds of FMCW radars have been used in the
context of autonomous navigation. The most common ones
are scanning radars [3], [4], [5], [6] and System-on-Chip
(SoC) radars [7], [8], [9], [10], [1], [11], [2], [12], [13].
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Scanning radars are bulky and expensive mechanically rotat-
ing sensors. After performing a 360 ° scan they provide polar
images of the environment with a high angular resolution.
They typically do not provide the relative velocity (Doppler)
information. SoC radars are usually much smaller in size and
require less power. SoC radars output distance, relative ve-
locity, azimuth (and sometimes elevation) angles of reflecting
points in the environment in the form of a 4D pointcloud (3D
position and Doppler velocity). Their accuracy and resolution
vary broadly depending on the antenna array characteristics
and on-chip processing algorithms. Using the millimeter-
wave technology in automotive industry [14], [15], [16]
brought about the miniaturization of the radar sensors and
boosted their accuracy. This in turn, paved the way for using
them onboard small UAVs for fusion with the IMU sensors.

Fig. 1. Experimental platforms used in this work. CNS-UAV on the left and
DLR’s ARDEA-X on the right. The red chip mounted at 45 ° inclination
on each platform is the TI AWR1843BOOST FMCW radar, which outputs
highly noisy and sparse 4D pointclouds (3D points and Doppler velocities).

In this work, we present a novel RIO method based on
the nonlinear optimization of factor graphs [17] allowing
the estimation of the full 6DoF state of a small UAV
using only IMU sensor and a light-weight, inexpensive, low-
power Texas Instruments AWR1843BOOST FMCW SoC
radar (see Fig. 1) in unknown and unprepared environments.
The optimization problem underlying the state estimation
task is maintained computationally tractable in real-time
by employing a sliding window of states with the partial
marginalization of oldest states using the Schur Comple-
ment technique. In our formulation we construct tightly-
coupled radar factors from the distances to the 3D points
matched between subsequent radar scans, instantaneous rel-
ative (Doppler) velocities and the distances to persistent
landmarks. Tight coupling allows the construction of factors
from single measurements, thus bypassing the necessity of
computing pose increments from noisy and sparse radar
pointclouds using a method such as ICP, which in such case
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is prone to fail [18]. In an attempt to make an exact one-
to-one comparison with the state-of-the-art multi-state EKF-
based RIO approach in [7], we implement both methods in
a single custom C++ framework where all front-end features
such as point matching, measurement trails construction,
velocity-based point pruning based on RANSAC etc. are
shared with only estimation back-ends changing. To our
knowledge it is the first such comparison of these two
common estimation back-ends in the RIO context. Our main
contributions are:

« Tightly-coupled formulation of a sliding window factor
graph-based RIO making maximal use of all the noisy
measurements from a light-weight, inexpensive SoC
FMCW radar sensor to correct the IMU drift.

o Efficient real-time capable implementation thanks to
the employment of the sliding window paradigm with
partial marginalization of the oldest states.

o One-to-one comparison with a state-of-the-art multi-
state. EKF-based RIO [7] in a single custom C++
framework made open-source to the community with
the present paper.

o Validation in real-world flight experiments on two
different UAV platforms to show the robustness and
portability of the presented method.

This paper is organized as follows. Section II reviews the
recent related work in the domain of RIO. In Section III, we
broadly describe our RIO algorithm. In Subsection III-A we
introduce the notation and definitions used across the paper.
Subsection III-B outlines the overview of the estimator. In
Subsection III-C we describe all factors used in our method
except for the prior factor which is defined in the Subsec-
tion III-D. In Section IV, we explain the experiments and
evaluation conducted in order to demonstrate and validate the
proposed method and compare it with the multi-state EKF-
based RIO. Finally, we present conclusions in Section V.

II. RELATED WORK

Among the approaches to RIO we can mainly distinguish
methods based either on filtering or nonlinear optimization.
We briefly review the most important work in both branches.
In [12] and [19] EKF-based RIO is presented in which no
scan matching is performed, only current Doppler velocity
measurements are used in the update step of the filter.
The exhibited drift is mitigated by the use of a pressure
sensor and in [20] still the same method is augmented
with the Manhattan world assumptions to limit the yaw
drift. Another filter-based RIO method is presented in [21]
where an iterated EKF is used in a full SLAM framework.
The use of an expensive high-end industry-grade SoC radar
allows the authors to perform loop closures thus attaining
high accuracy. The approach in [13] uses loosely-coupled
Unscented Kalman Filter (UKF) to fuse the pose computed
using Normal Distributions Transform (NDT) with the IMU
measurements. The presented system attains high accuracy.
Nevertheless, it is demonstrated in 2D environments with
low-dynamics trajectories.

Within RIO methods employing the nonlinear optimiza-
tion, the authors in [2] arrange two SoC radar sensors in
an orthogonal manner in order to acquire strong reflections
from more than one direction. Special casing destined for
harsh environments is designed to house the sensor suite
composed of the radars and an IMU. As the estimation
back-end the authors use a pose graph composed of custom
instantaneous linear velocity factors which they solve with
the GTSAM package [22]. Interestingly, they do not fuse
IMU measurements as separate factors but use them to
initialize the orientation in the velocity factor. The authors
do not mention any marginalization strategy which is crucial
for obtaining a good prior in the factor graph. In [1] a
RIO system is described in which nonlinear optimization is
solved over a moving window of states to estimate the 3D
ego-velocity of an UAV. The approach is demonstrated as
effective in low-visibility conditions. Also here the authors
do not mention how the oldest states are marginalized out
and the method is focused on estimating the ego-velocity
rather than the full 6DoF state of the system.

RIO approaches exist which make use of deep learning.
In [4] a method is developed which combines unsupervised
deep learning for features extraction with the factor graph
optimization for state estimation. In [5] deep learning is
used to learn keypoints for scan matching and delta-pose
computation. Both above mentioned methods use scanning
radars unsuitable for small UAVs.

III. TIGHTLY-COUPLED FACTOR GRAPH FORMULATION
FOR RADAR-INERTIAL STATE ESTIMATION

A. Notation And Definitions

Names of reference frames are capitalized and -calli-
graphic, e.g., {Z} for IMU. A pose between the reference
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reference frame C to a point Py, ez(pressed in C, cCan be
Alipl} = AT, cppl]

S

transformed into the frame A by
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(read as /"°""x ). Rotations are stored as unit quaternions
q € SO(3) with ||q|| = 1 allowing a direct mapping

between rotation matrices and unit Hamiltonian quaternions
by “R; = R{"qu} € SO’ and “q; = q{*Ry} [23].
I is the identity matrix. For vectors and block matrices,
semicolons and colons improve the readability such that
[A;B] = g and [A,B] = [A B].
We define the state variables of our system as follows:
Xy = [gPI% 9Gz;9vziba; b, |
xr = [’p,] )
X = [X Iy
with the IMU state x; and a state of a persistent landmark
xr. 9ps, 9v;, and 9q, are the position, velocity, and
orientation of the IMU/body frame {Z} with respect to
the navigation frame {G}, respectively. b, and b, are the
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measurement biases of the gyroscope and accelerometer,
respectively. 9p - define the position of a persistent landmark
{L} with respect to the navigation frame {G}. X is the set of
all states contained within a single sliding window. In order
for the optimizer to solve the problem we must compute the
jacobians of observation models with respect to the error-
state which we define as follows:

X = {gf)ﬁgBI;g{’I?ba;bw} 2

% =[7p,]
For translational components, e.g., the position, the error is
defined as 9p; = 9p,—9p, while for rotations/quaternions
it is defined as q = ' ® q = Ll;%@j, with ® and 6
being quaternion product and small angle approximation,
respectively.

B. Estimator Overview

In our RIO approach at every iteration of the estimator
an optimization problem is formulated as a nonlinear factor
graph over a sliding window of N successive IMU states
corresponding to time instants at which radar measurements
were taken and a set of L persistent landmarks. We depict
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Fig. 2. Snapshot of the sliding window of states and measurements
and the corresponding factor graph. Note the tightly-coupled nature of the
graph, in which single measurements corresponding to Doppler velocities of
3D points, matched 3D points between radar scans and matched persisted
landmarks are used to construct each factor. The tight coupling allows for
maximal exploitation of sensor information. Note that the number of factors
in the graph is only illustrative - in a real graph in our system there are
many more factors involved.
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Fig. 3. Initialization of the newest IMU state in the sliding window.
Dashed and solid overbraces mark the sliding window before and after
the shift forwards which occurs upon acquiring a new radar measurement
(green vertical lines). The new IMU state X, (t;4+1) in the window
will be initialized with the prediction from the previous solution X7, (t;)
using the pre-integrated new IMU measurements (marked with red vertical
lines) between the time instants of the previous and the current radar
measurements.

the representation of a single factor graph corresponding to
one sliding window of states in the Fig. 2. The edges in

the graph represent factors and nodes the estimated states.
Each time a new radar measurement is received we form
a new graph and solve it to obtain the estimate of X. To
accommodate the new IMU state in the graph, we first
marginalize out the oldest one and use it to form the new
prior (see Section III-D). We populate the new graph with
factors corresponding to the IMU states which remained
after the marginalization and the persistent landmarks seen
from them. Then, we initialize all states in the window
X with their previous solutions. The new IMU state in
X is initialized from the last IMU state in the previous
solution by applying the delta-motion from the pre-integrated
IMU measurements from the timespan between the previous
measurement (corresponding to the last estimated state) and
the current one (see Fig. 3). We solve the graph using
Levenberg-Marquardt algorithm with the GTSAM package
[22].

The overall cost function for the proposed factor graph is
as follows:

X*:arg)r(ninej+ep+eD+ev+eL (3)
where, ¢e;, ep, ep, ey, ey, are the cost contributions from
all of the IMU pre-integration, prior, radar 3D distance,
velocity, persistent landmarks factors present in the graph,
respectively.

C. Factors

In factor graph formulations, factors represent probabilistic
constraints on the variables involved in the estimation and are
obtained from measurements or prior knowledge. To define
a factor we typically define a probabilistic measurement
model constraining a subset of the state variables and upon
creation, supply the corresponding measurement. Moreover,
for solvers using the “lift-solve-retract” paradigm [24] we
must provide a jacobian of the model with respect to the
error-state defined in the tangent space of the state manifold.
In Fig. 2, we show all types of factors included in our
factor graph approach. IMU pre-integration factor constrains
two estimated IMU states and we construct it from all the
IMU measurements obtained between the two constrained
states. Using IMU pre-integration factor is necessary since
the IMU measurements come at high frequency and not pre-
integrating them would lead to a huge number of variables
in the optimization. We use the factor formulated in [24].

Our tightly-coupled relative velocity factor is a unary fac-
tor, which means that it introduces constraints on the subset
of the variables in only one IMU state. Hence, in the Fig. 2
these factors have connections only to one node representing
the state at which the velocity measurements were taken.
As seen in the Eq. 4, the constrained state variables are
9q; and 9v;. The factor expresses the projection of the
current robot ego-velocity transformed into the radar frame
onto the direction vector pointing towards the corresponding
3D point:

.
r
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where r = Rppi is the 3D point detected in the current scan,
sw is the current angular velocity of the IMU in the IMU
frame, and 9v; is the current linear velocity of the IMU
in the navigation frame. In order to reject outliers, we use
Dynamic Covariance Scaling (DCS) robust kernel function
[25] in this factor.

In order to further constrain the graph variables and make
maximal use of the rich information provided by the radar,
we build tightly-coupled factors for persistent landmarks and
3D point distance measurements organized in measurements
trails. As we aim at an exact one-fo-one comparison with
the [7], we use the exact same code for 3D point matching,
obtaining measurement trails and persistent landmarks as in
(71, [8].

We construct 3D point distance factors from a set of point
trails which contain a history of continuous detections of the
same 3D points (see [7] for details). For all points in a trail
we use the IMU states to transform all points Rp;;v from the
trail history at time instance ¢,, where p =1,.. ., V and V is
the length of the matched trail, to the current radar reference
frame:

Rp'k ="Ry (*%pn +(9RE)T (—9pF+ s
o+ 7R (Fo + R

where 7R and Tpj, is the constant pose (orientation and
position) of the radar frame with respect to the IMU frame.
gRgc’t"} nd 9p {tc’t”} are the IMU orientation and position
corresponding to the trail history element at time ¢, and
current radar scan at t., with respect to the navigation frame
{G}. For factor construction we use the distance to the
transformed matched point:

(6)

Rt
= e

where dp; is the dlstance to a single point j in the matched
trail history p L atty aligned to the current radar pose at
te.

We also use persistent landmarks to build factors which
introduce constraints between the landmarks and the IMU
states from which these landmarks have been seen (Fig. 2).
Promotion of trails with sufficiently long history detection to
persistent landmarks is described in details in [7]. Measure-
ment model used in the factor is:
= IR% (gR} (lm - %p'R)7 (7N

R
llm = RrPz,, - gpI)

dy,, =

m

.l

As for the velocity factor, for both 3D points and persis-
tent landmark factors, we use DCS for outlier rejection.
Compared to the chi-squared-based outlier rejection in [7],
using the DCS does not remove the factors judged as out-of-
distribution based on their residuals, only down-weigh them.

All 3D points delivered by radar and used for constructing
factors are pruned for outliers using RANSAC similarly to
[12].

D. Partial Marginalization

As the robot evolves in its environment, new IMU states
and persistent landmarks are being added to the state vector.
Nonetheless, to keep the state estimation task computation-
ally feasible, we must bound the number of variables in the
underlying optimization problem. Hence, upon the addition
of new states we must remove the oldest ones by marginaliz-
ing them out. In our system we achieve marginalization with
the Schur Complement technique (see Fig. 4). Namely, when
forming a new graph upon obtaining a new radar measure-
ment, due to conditional independence [26], we consider a
sub-graph containing only the states to be marginalized out
and the states connected to these states (sometimes called
Markov blanket). We linearize the resulting sub-graph around
the previous solution (current estimate) to obtain its hessian
matrix and gradient vector:

H/I,/L H/LA {C/L _ bp, (9)
H,, Hy\| |x\ b,

Where ;o and A denote the sets of states to marginalize
out and states connected to those states, respectively. We

calculate the Schur Complement of the states to marginalize
out in the hessian and the corresponding gradient:

Hj, =H,\ — Hy, H,_ | H,,,
Y =b, —H,,H,'b,

K

(10)

and use the resulting matrix and vector to form the new prior
factor.
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Fig. 4. Depiction of the marginalization of the oldest IMU state (circle with
dashed black line). Sub-graph (marked with the blue rectangle) is formed
from the state to marginalize out and the states it is connected to (Markov
blanket). We linearize the sub-graph and in the obtained Gauss-Newton
system of equations we apply the Schur Complement to the marginalized
out variables to form the new prior factor. Newly added states and factors
are marked with the yellow rectangle. Note that the indices adjust in the
window from time ¢; to t; 1 (e.g., Xy, (t;) becomes x7, | (t;41)) as we
only keep a maximum of N IMU states.



IV. RESULTS
A. Experimental Setups

We perform real-world experiments with two different
platforms (Fig. 1) to demonstrate our RIO method on differ-
ent systems. One of the platforms (CNS-UAV) is described
thoroughly in [7]. The other one is the ARDEA-X UAV
designed and built from ground up at the German Aerospace
Center’s (DLR) Institute of Robotics and Mechatronics.
The system was designed for autonomous exploration of
unknown regions in the context of planetary space robotics.
An Intel NUC for higher-level and a Pixhawk for lower-
level tasks make up ARDEA’s two primary navigational
components. The radar module is connected to the Intel
NUC. The IMU data is obtained from the Pixhawk. On both
platforms the same SoC FMCW radar chip is mounted (Texas
Instruments AWR1843) and configured in the same way (as
in [7]). We gather datasets with each platform in which we
record the ground truth trajectories using motion capture
system and sensor readings from the IMU and radar. In the
case of ARDEA-X we record the EKF RIO estimates com-
puted onboard. For CNS-UAYV both factor graph and EKF are
executed offline on the recorded sensor data on an Intel Core
i7-10850H vPRO laptop with 16 GB RAM in a custom C++
framework compiled with gcc 9.4.0 at -O3 optimization level.
In the case of CNS-UAY, for both factor graph and EKF RIO
we manually calibrate the extrinsic parameters between the
IMU and the radar. In the case of the ARDEA-X, for EKF
RIO these parameters are estimated online. Both estimators
use exactly same front-end parameters and in both cases the
sliding window size is set to N = 10. Execution time for
our factor graph RIO on the above mentioned desktop PC is
16.15ms on average which proves its real-time capability.
Compared with 2.15ms (propagation and update) for the
EKF RIO in [7] the latter is (as expected) performing better.

B. Evaluation

We use the data recorded with the two platforms described
in Subsec. IV-A for evaluation of our factor graph RIO
approach and for comparison with the EKF RIO method from
[7]. With each of the platforms we create a dataset of several
flown trajectories (five in case of ARDEA-X and three in case
of CNS-UAV). Within the CNS-UAV dataset the trajectories
are not pre-planned, manually flown, are between 150 m -
175m long and include pronounced motions in all three
dimensions. ARDEA-X dataset contains two pre-planned
waypoint-based and three not pre-planned manually flown
shorter trajectories. Sample trajectories from each dataset
can be seen in the Fig. 5. For every flight in each dataset we
compute the norm of the RMSE of position together with the
mean and standard deviation of the RMSE values (see Tab. I).
Our comparison shows that both methods perform similarly
on average as seen in the Tab. I. This is perhaps a counter-
intuitive conclusion since the optimization of factor graphs
is often considered to provide superior accuracy thanks to
successive linearizations performed during the optimization.
Nevertheless, in the case where the linearization point is

TABLE I
NORM OF RMSE VALUES OF POSITION ACROSS FLIGHTS PERFORMED
WITH ARDEA-X AND CNS-UAV FOR BOTH METHODS

ARDEA-X dataset
Nr RMSE Norm EKF | RMSE Norm FG
1 0.136 0.213
2 0.083 0.153
3 0.377 0.446
4 0.698 0.711
5 0.265 0.279
Average 0.312 0.360
Std. dev. 0.218 0.200
CNS-UAV dataset
1 1.417 0.625
2 0.877 1.660
3 1.077 1.008
Average 1.124 1.098
Std. dev. 0.223 0.426

well-determined, this advantage turns out not to be the crucial
factor in determining the accuracy. Indeed, in the case of
our experiments, the system is either initialized with the
knowledge of the ground truth, or with its initial pose being
the frame of reference for the estimator. Such settings leave
very little room for any transient behaviours of the estimator.
Thus, diminishing the value added from possible multiple
linearizations.

To demonstrate the benefits of iterative linearizations in
the factor graphs during transient phases, we initialize both
the EKF and the factor graph-based estimators with wrong
initial velocity set to [2.0, 2.0, 0.0]% (whereas the true one is
equal to [0.0, 0.0, 0.0]%). In the Fig. 9 we show that in both
cases when we do, and do not account for the wrong velocity
initialization in the initial covariance, the factor graph-based
approach always outperforms the EKF.

In our comparison we note the importance of the front-
end in any state estimation system. While both RIO methods
perform similarly on average, it turns out that there are quali-
tative differences between the estimation results of particular
UAV trajectories (See Fig. 6, 7, 8). These discrepancies are
attributed to different outlier rejection strategies between the
EKF and the factor graph-based RIO.

V. CONCLUSIONS

In this paper we presented a novel tightly-coupled RIO
method based on the nonlinear optimization of factor graphs
in a sliding window of states and measurements. The used
sensor suite is light-weight, inexpensive, low-power and
consumer-grade, hence widely accessible. The presented ap-
proach is rendered real-time capable thanks to the application
of the partial marginalization of oldest states in order to
bound the state vector size and form an informative prior
for the estimator. We performed a omne-fo-one comparison
with a state-of-the-art multi-state EKF RIO method on the
in-house datasets collected with two different UAV platforms
in order to demonstrate the soundness of our framework.
Comparing the two methods reveals that they perform on-
par in terms of accuracy when the linearization point is not
far from the true state. In terms of CPU load the comparison
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Fig. 5. Sample trajectories from each dataset with the take-off and landing
points marked in red and black respectively. Trajectories collected with the
CNS-UAV are not pre-planned, longer and in general more challenging in
terms of dynamics.

Estimated position against ground truth

G

— 6T
€1 EKF
N

Mo L
ol Wl f W\Q:'f\j\;/ AR WAR

0 50 100 150

200
time [s]

Fig. 6.  Estimated position of the UAV using both methods for the
first trajectory from the CNS-UAV dataset. The factor graph-based method
performs visibly better with the norm of RMSE less than the half of the
corresponding RMSE value for the EKF-based method. The thin shaded
regions mark points in time where the EKF-based estimator started acquiring
very heavy drift due to outliers.

Estimated position against ground truth

Fig. 7. Estimation results for the position of the UAV using both methods
for the second trajectory from the CNS-UAV dataset. Thin shaded regions
are marked as areas where the estimators failed to reject outliers. This
resulted in major degradation of the accuracy. We see that in the first two
sub-plots factor-graph based method acquires very strong yaw drift (x and
y axes seem swapped) from which it does not recover. For the EKF the
concentration of the outliers in the marked region in the third sub-plot results
in a strong vertical drift.
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Fig. 8. Plot of the estimates of position of the UAV using both methods for
the third trajectory from the CNS-UAV dataset. In this case both estimators
perform on-par in tems of RMSE with the outliers affecting the vertical drift
for the factor graph-based estimator and x, y coordinates for the EKF-based
one.
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Fig. 9. Plot of convergence of the mean of errors in speed (norm of the

velocity) in the case of incorrect velocity initialization for both methods. The
mean is taken across the whole ARDEA-X dataset during the first 10s of the
data recording when the UAV stands still on the ground before the take-off.
In the upper sub-plot, we initialize incorrectly the velocity, yet we account
for this uncertainty by setting accordingly large corresponding covariance
entries. The factor graph approach is unaffected and converges quickly to
the correct value (0 %), whereas the EKF never reaches convergence. In
the lower sub-plot, for the same wrong initialization, we do not adjust the
covariance settings, effectively misleading the estimator into believing it is
initialized correctly. In this case the EKF diverges catastrophically, while
factor graph approach still converges although to a slightly offset value.
Shaded regions denote the 1o bounds of the plotted means.

shows that the EKF RIO is less resource-demanding. We
demonstrated the advantages that successive linearizations in
the factor graph-based method bring to the convergence of
the estimator in transient phases (when the linearization point
is far from the true state). We provided this demonstration in
both the case when the wrong initialization is, and when it
is not reflected in the uncertainty of the initial state (which
is often the case in practice). The whole comparison was
performed in such way that both EKF and factor graph back-
ends were implemented in the same software framework,
effectively sharing exactly the same front-end features and
parameters. We make the software framework and datasets
used in the present paper open-source in order to facilitate
further research and comparisons.
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